Virginia Regulatory Town Hall

Proposed Text

highlight

Action:
Triennial Review Remaining Issues/Bacteria, Ammonia, Cadmium and ...
Stage: Proposed
 

9VAC25-260-140. Criteria for surface water.

A. Instream water quality conditions shall not be acutely1 or chronically2 toxic except as allowed in 9VAC25-260-20 B (mixing zones). The following are definitions of acute and chronic toxicity conditions:

"Acute toxicity" means an adverse effect that usually occurs shortly after exposure to a pollutant. Lethality to an organism is the usual measure of acute toxicity. Where death is not easily detected, immobilization is considered equivalent to death.

"Chronic toxicity" means an adverse effect that is irreversible or progressive or occurs because the rate of injury is greater than the rate of repair during prolonged exposure to a pollutant. This includes low level, long-term effects such as reduction in growth or reproduction.

B. The following table is a list of numerical water quality criteria for specific parameters.

Table of Parameters 6, 7

PARAMETER
CAS Number

USE DESIGNATION

AQUATIC LIFE

HUMAN HEALTH

FRESHWATER

SALTWATER

Public Water Supply3

All Other Surface Waters4

Acute1

Chronic2

Acute1

Chronic2

Acenapthene (μg/l)
83329

 

 

 

 

670   70

990 90

Acrolein (μg/l)
107028

 

 

 

 

6.1   3

9.3   400

Acrylonitrile (μg/l)
107131

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.51 0.61

2.5 70

Aldrin (μg/l)
309002

Known or suspected carcinogen; human health criteria at risk level 10-5.

3.0

 

1.3

 

0.00049 0.0000077

0.00050 0.0000077

Ammonia (μg/l)
766‑41‑7

Chronic criterion is a 30-day average concentration not to be exceeded more than once every three (3) years on the average.(see 9VAC25-260-155)

 

 

 

 

 

 

Anthracene (μg/l)
120127

 

 

 

 

8,300 300

40,000

400

Antimony (μg/l)
7440360

 

 

 

 

5.6

640

Arsenic (μg/l)5
7440382

340

150

69

36

10

 

Bacteria
(see 9VAC25-260-160 and 170)

 

 

 

 

 

 

Barium (μg/l)
7440393

 

 

 

 

2,000

 

Benzene (μg/l)
71432

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

22

5.8

510    160

Benzidine (μg/l)
92875

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.00086  0.0014

0.0020  0.11

Benzo (a) anthracene (μg/l)
56553

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

 

0.038  0.012

 

0.18  0.013

Benzo (b) fluoranthene (μg/l)
205992

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.038  0.012

0.18  0.013

Benzo (k) fluoranthene (μg/l)
207089

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.038 

0.12

0.18   0.13

Benzo (a) pyrene (μg/l)
50328

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.038  0.0012

0.18  0.0013

Bis2-Chloroethyl Ether
111444

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.30 

5.3   22

Bis (chloromethyl) Ether

542881

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.0015

0.17

Bis2-Chloroisopropyl Ether (Bis (2-Chloro-1-methylethyl) Ether)   (μg/l)
108601

 

 

 

 

1,400  200

65,000  4,000

Bis2-Ethylhexyl Phthalate (μg/l)
117817

Known or suspected carcinogen; human health criteria at risk level 10-5. Synonym = Di-2-Ethylhexyl Phthalate.

 

 

 

 

12  3.2

22   3.7

Bromoform (μg/l)
75252

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

43  70

1,400  1,200

Butyl benzyl phthalate (μg/l)
85687

 

 

 

 

1,500  0.10

1,900  0.10

Cadmium (μg/l)5
7440439

Freshwater values are a function of total hardness as calcium carbonate (CaCO3) mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion (μg/l)
WER e {1.128[In(hardness)] – 3.828}]

e (0.9789[ln(hardness)]-3.866) (CFa)

Freshwater chronic criterion (μg/l)
WER [e {0.7852[In(hardness)] – 3.490}]

e (0.7977[ln(hardness)]-3.909) (CFc)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F

e = natural antilogarithm

ln = natural logarithm

CF = conversion factor a (acute) or c (chronic)

CFa = 1.136672-[(ln hardness)(0.041838)]

CFc = 1.101672-[(ln hardness)(0.041838)]

3.9 1.8
CaCO3 = 100

1.1 0.72
CaCO3 = 100

40 33
X WER

8.8 7.9
X WER

5

 

Carbon tetrachloride (μg/l)
56235

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

2.3   4.0

16   50

Chlordane (μg/l)
57749

Known or suspected carcinogen; human health criteria at risk level 10-5.

2.4

0.0043

0.09

0.0040

0.0080  0.0031

0.0081  0.0032

Chloride (μg/l)
16887006

Human Health criterion to maintain acceptable taste and aesthetic quality and applies at the drinking water intake.

Chloride criteria do not apply in Class II transition zones (see subsection C of this section).

860,000

230,000

 

 

250,000

 

Chlorine, Total Residual (μg/l)
7782505

In DGIF class i and ii trout waters (9VAC25-260-390 through 9VAC25-260-540) or waters with threatened or endangered species are subject to the halogen ban (9VAC25-260-110).

19

See 9VAC25-260-110

11

See 9VAC25-260-110

 

 

 

 

Chlorine Produced Oxidant (μg/l)
7782505

 

 

13

7.5

 

 

Chlorobenzene (μg/l)
108907

 

 

 

 

130   100

1,600  800

Chlorodibromomethane (μg/l)
124481

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

4.0  8.0

130  210

Chloroform (μg/l)
67663

 

 

 

 

340   60

11,000  2,000

2-Chloronaphthalene (μg/l)
91587

 

 

 

 

1,000   800

1,600   1,000

2-Chlorophenol (μg/l)
95578

 

 

 

 

81   30

150   800

Chlorpyrifos (μg/l)
2921882

0.083

0.041

0.011

0.0056

 

 

Chromium III (μg/l)5
16065831

Freshwater values are a function of total hardness as calcium carbonate CaCO3 mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion μg/l

WER [e{0.8190[In(hardness)]+3.7256}] (CFa)

Freshwater chronic criterion μg/l
WER [e{0.8190[In(hardness)]+0.6848}] (CFc)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140.F

e = natural antilogarithm

ln = natural logarithm

CF = conversion factor a (acute) or c (chronic)

CFa= 0.316

CFc=0.860

570
(CaCO3 = 100)

74
(CaCO3 = 100)

 

 

100

(total Cr)

 

Chromium VI (μg/l)5
18540299

16

11

1,100

50

 

 

Chrysene (μg/l)
218019

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.0038   1.2

0.018   1.3

Copper (μg/l)5
7440508

Freshwater values are a function of total hardness as calcium carbonate CaCO3 mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion (μg/l)

WER [e {0.9422[In(hardness)]-1.700}] (CFa)

Freshwater chronic criterion (μg/l)
WER [e {0.8545[In(hardness)]-1.702}] (CFc)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F.

e = natural antilogarithm

ln = natural logarithm

CF = conversion factor a (acute) or c (chronic)

CFa = 0.960

CFc = 0.960

Acute saltwater criterion is a 24-hour average not to be exceeded more than once every three years on the average.

13
CaCO 3 = 100

9.0
CaCO3 = 100

9.3
X WER

6.0
X WER

1,300

 

Cyanide, Free (μg/l)
57125

22

5.2

1.0

1.0

140   4

16,000   400

DDD (μg/l)
72548

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.0031   0.0012

0.0031 0.0012 

DDE (μg/l)
72559

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.0022  0.00018

0.0022   0.00018

DDT (μg/l)
50293

Known or suspected carcinogen; human health criteria at risk level 10-5.

Total concentration of DDT and metabolites shall not exceed aquatic life criteria.

1.1

0.0010

0.13

0.0010

0.0022   0.00030

0.0022

0.00030

Demeton (μg/l)
8065483

 

0.1

 

0.1

 

 

Diazinon (μg/l)
333415

0.17

0.17

0.82

0.82

 

 

Dibenz (a, h) anthracene (μg/l)
53703

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.038   0.0012

0.18   0.0013

1,2-Dichlorobenzene (μg/l)

95501

 

 

 

 

420   1,000

1,300   3,000

1,3-Dichlorobenzene (μg/l)

541731

 

 

 

 

320   7

960   10

1,4 Dichlorobenzene (μg/l)
106467

 

 

 

 

63    300

190   900

3,3 Dichlorobenzidine
91941

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.21   0.49

0.28   1.5

Dichlorobromomethane (μg/l)
75274

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

5.5   9.5

170   270

1,2 Dichloroethane (μg/l)
107062

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

3.8    99

370   6,500

1,1 Dichloroethylene (μg/l)
75354

 

 

 

 

330   300

7,100   20,000

1,2-trans-dichloroethylene (μg/l)
156605

 

 

 

 

140   100

10,000   4,000

2,4 Dichlorophenol (μg/l)
120832

 

 

 

 

77   10

290   60

2,4 Dichlorophenoxy acetic acid (Chlorophenoxy Herbicide) (2,4-D) (μg/l)
94757

 

 

 

 

 

 

 

100  1,300

 12,000

1,2-Dichloropropane (μg/l)
78875

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

5.0    9.0

150   310

1,3-Dichloropropene (μg/l)
542756

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

3.4   2.7

210   120

Dieldrin (μg/l)
60571

Known or suspected carcinogen; human health criteria at risk level 10-5.

0.24

0.056

0.71

0.0019

0.00052   0.000012

0.00054    0.000012

Diethyl Phthalate (μg/l)
84662

 

 

 

 

17,000   600

44,000    600

2,4 Dimethylphenol (μg/l)
105679

 

 

 

 

380    100

850    3,000

Dimethyl Phthalate (μg/l)
131113

 

 

 

 

270,000   2,000

1,100,000    2,000

Di-n-Butyl Phthalate (μg/l)
84742

 

 

 

 

2,000   20

4,500   30

2,4 Dinitrophenol (μg/l)
51285

 

 

 

 

69    10

5,300    300

Dinitrophenols  (μg/l)

25550587

 

 

 

 

10

1,000

2-Methyl-4,6-Dinitrophenol (μg/l)
534521

 

 

 

 

13   2

280   30

2,4 Dinitrotoluene (μg/l)
121142

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

1.1   0.49

34   17

Dioxin 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (μg/l)
1746016

 

 

 

 

5.0 E-8

5.1 E-8

1,2-Diphenylhydrazine (μg/l)
122667

Known or suspected carcinogen; human health criteria at risk level 10-5

 

 

 

 

0.36   0.3

2.0  

Dissolved Oxygen (μg/l)
(See 9VAC25-260-50)

 

 

 

 

 

 

Alpha-Endosulfan (μg/l)
959988

Total concentration alpha and beta-endosulfan shall not exceed aquatic life criteria.

0.22

0.056

0.034

0.0087

62   20

89   30

Beta-Endosulfan (μg/l)
33213659

Total concentration alpha and beta-endosulfan shall not exceed aquatic life criteria.

0.22

0.056

0.034

0.0087

62    20

89   40

Endosulfan Sulfate (μg/l)
1031078

 

 

 

 

62   20

89   40

Endrin (μg/l)
72208

0.086

0.036

0.037

0.0023

0.059   0.03

0.060   0.03

Endrin Aldehyde (μg/l)
7421934

 

 

 

 

0.29    1

0.30   1

Ethylbenzene (μg/l)
100414

 

 

 

 

530    68

2,100   130

Fecal Coliform
(see 9VAC25-260-160

 

 

 

 

 

 

Fluoranthene (μg/l)
206440

 

 

 

 

130   20

140   20

Fluorene (μg/l)
86737

 

 

 

 

1,100   50

5,300   70

Foaming Agents (μg/l)
Criterion measured as methylene blue active substances. Criterion to maintain acceptable taste, odor, or aesthetic quality of drinking water and applies at the drinking water intake.

 

 

 

 

500

 

Guthion (μg/l)
86500

 

0.01

 

0.01

 

 

Heptachlor (μg/l)
76448

Known or suspected carcinogen; human health criteria at risk level 10-5.

0.52

0.0038

0.053

0.0036

0.00079    0.000059

0.00079    0.000059

Heptachlor Epoxide (μg/l)
1024573

Known or suspected carcinogen; human health criteria at risk level 10-5.

0.52

0.0038

0.053

0.0036

0.00039   0.00032

0.00039    0.00032

Hexachlorobenzene (μg/l)
118741

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.0028    0.00079

0.0029    0.00079

Hexachlorobutadiene (μg/l)
87683
Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

4.4    0.1

180    0.1

Hexachlorocyclohexane Alpha-BHC (μg/l)
319846

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.026   0.0036

0.049    0.0039

Hexachlorocyclohexane Beta-BHC (μg/l)
319857

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.091    0.080

0.17    0.14

Hexachlorocyclohexane (μg/l) (Lindane)

Gamma-BHC
58899

Known or suspected carcinogen; human health criteria at risk level 10-5.

0.95

 

0.16

 

0.98    4.2

1.8    4.4

Hexachlorocyclohexane (HCH)-Technical  (μg/l)

608731

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

 

0.066

0.1

Hexachlorocyclopentadiene (μg/l)
77474

 

 

 

 

40    4

1,100    4

Hexachloroethane (μg/l)
67721

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

14    1

33    1

Hydrogen sulfide (μg/l)
7783064

 

2.0

 

2.0

 

 

Indeno (1,2,3,-cd) pyrene (μg/l)
193395

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.038    0.012

0.18   0.013

Iron (μg/l)
7439896

Criterion to maintain acceptable taste, odor or aesthetic quality of drinking water and applies at the drinking water intake.

 

 

 

 

300

 

Isophorone (μg/l)
78591

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

350   340

9,600   18,000

Kepone (μg/l)
143500

 

zero

 

zero

 

 

Lead (μg/l)5
7439921

Freshwater values are a function of total hardness as calcium carbonate CaCO3 mg/l and the water effect ratio. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion (μg/l)
WER [e {1.273[In(hardness)]-1.084}]

Freshwater chronic criterion (μg/l)
WER [e {1.273[In(hardness)]-3.259}]

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F

e = natural antilogarithm

ln = natural logarithm

120
CaCO3 = 100

14
CaCO3 = 100

240 X WER

9.3 X WER

15

 

Malathion (μg/l)
121755

 

0.1

 

0.1

 

 

Manganese (μg/l)
7439965

Criterion to maintain acceptable taste, odor or aesthetic quality of drinking water and applies at the drinking water intake.

 

 

 

 

50

 

Mercury (μg/l) 5
7439976

1.4

0.77

1.8

0.94

 

 

Methyl Bromide (μg/l)
74839

 

 

 

 

47  100

1,500    10,000

3-Methyl-4-Chlorophenol

59507

 

 

 

 

500

2,000

Methyl Mercury (Fish Tissue Criterion mg/kg) 8
22967926

 

 

 

 

0.30

0.30

Methylene Chloride (μg/l)
75092

Known or suspected carcinogen; human health criteria at risk level 10-5 Synonym = Dichloromethane

 

 

 

 

46    20

5,900    1,000

Methoxychlor (μg/l)
72435

 

0.03

 

0.03

100  0.02

0.02 

Mirex (μg/l)
2385855

 

zero

 

zero

 

 

Nickel (μg/l)5
744002

Freshwater values are a function of total hardness as calcium carbonate CaCO3 mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion μg/l
WER [e {0.8460[In(hardness)] + 1.312}] (CFa)

Freshwater chronic criterion (μg/l)
WER [e {0.8460[In(hardness)] - 0.8840}] (CFc)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F

e = natural antilogarithm

ln = natural logarithm

CF = conversion factor a (acute) or c (chronic)

CFa = 0.998

CFc = 0.997

180
CaCO3 = 100

20
CaCO3 = 100

74 X WER

8.2 X WER

610 

4,600

Nitrate as N (μg/l)
14797558

 

 

 

 

10,000

 

Nitrobenzene (μg/l)
98953

 

 

 

 

17   10

690   600

N-Nitrosodimethylamine (μg/l)
62759

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.0069 

30

N-Nitrosodiphenylamine (μg/l)
86306

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

33

160 60

N-Nitrosodi-n-propylamine (μg/l)
621647

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.050

5.1

Nonylphenol
1044051

28

6.6

7.0

1.7

 

 

Parathion (μg/l)
56382

0.065

0.013

 

 

 

 

PCB Total (μg/l)
1336363

Known or suspected carcinogen; human health criteria at risk level 10-5

 

0.014

 

0.030

0.00064

0.00064

Pentachlorobenzene  (μg/l)

608935

 

 

 

 

0.1

0.1

Pentachlorophenol (μg/l)
87865

Known or suspected carcinogen; human health criteria risk level at 10-5

Freshwater acute criterion (μg/l)
e (1.005(pH)-4.869)

Freshwater chronic criterion (μg/l)
e (1.005(pH)-5.134)

8.7
pH = 7.0

6.7
pH = 7.0

13

7.9

2.7    0.3

30    0.4

pH
See 9VAC25-260-50

 

 

 

 

 

 

Phenol (μg/l)
108952

 

 

 

 

10,000   4,000

860,000   300,000

Phosphorus Elemental (μg/l)
7723140

 

 

 

0.10

 

 

Pyrene (μg/l)
129000

 

 

 

 

830   20

4,000   30

Radionuclides

 

 

 

 

 

 

   Gross Alpha Particle Activity (pCi/L)

 

 

 

 

15

 

   Beta Particle & Photon Activity (mrem/yr) (formerly man-made radionuclides)

 

 

 

 

4

 

Combined Radium 226 and 228 (pCi/L)

 

 

 

 

5

 

Uranium (μg/L)

 

 

 

 

30

 

Selenium (μg/l)5
7782492

WER shall not be used for freshwater acute and chronic criteria. Freshwater criteria expressed as total recoverable.

20

5.0

290 X WER

71
X WER

170

4,200

Silver (μg/l)5
7440224

Freshwater values are a function of total hardness as calcium carbonate (CaCO3) mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion (μg/l)
WER [e {1.72[In(hardness)]-6.52}] (CFa)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F

e = natural antilogarithm

ln = natural logarithm

CF = conversion factor a

(acute) or c (chronic)

CFa = 0.85

3.4; CaCO3 = 100

 

1.9 X WER

 

 

 

Sulfate (μg/l)
Criterion to maintain acceptable taste, odor or aesthetic quality of drinking water and applies at the drinking water intake.

 

 

 

 

250,000

 

Temperature

See 9VAC25-260-50

 

 

 

 

 

 

1,2,4,5-Tetrachlorobenzene

95943

 

 

 

 

0.03

0.03

1,1,2,2-Tetrachloroethane (μg/l)
79345

Known or suspected carcinogen; human health criteria at risk level 10-5)

 

 

 

 

1.7    2.0

40   30

Tetrachloroethylene (μg/l)
127184

Known or suspected carcinogen; human health criteria at risk level 10-5)

 

 

 

 

6.9   100

33    290

Thallium (μg/l)
7440280

 

 

 

 

0.24

0.47

Toluene (μg/l)
108883

 

 

 

 

510   57

6,000   520

Total Dissolved Solids (μg/l)
Criterion to maintain acceptable taste, odor or aesthetic quality of drinking water and applies at the drinking water intake.

 

 

 

 

500,000

 

Toxaphene (μg/l)
8001352

Known or suspected carcinogen; human health criteria at risk level 10-5.

0.73

0.0002

0.21

0.0002

0.0028   0.0070

0.0028    0.0071

Tributyltin (μg/l)
60105

0.46

0.072

0.42

0.0074

 

 

1, 2, 4 Trichlorobenzene (μg/l)
120821

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

35    0.71

70    0.76

1,1,1-Trichloroethane

71556

 

 

 

 

10,000

200,000

1,1,2-Trichloroethane (μg/l)
79005

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

5.9  5.5

160   89

Trichloroethylene (μg/l)
79016

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

25   6.0

300   70

2, 4, 5 –Trichlorophenol

95954

 

 

 

 

300

600

2, 4, 6-Trichlorophenol
88062

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

14   15

24   28

2-(2, 4, 5-Trichlorophenoxy propionic acid (Silvex) (μg/l)
93721

 

 

 

 

50

 

Vinyl Chloride (μg/l)
75014

Known or suspected carcinogen; human health criteria at risk level 10-5.

 

 

 

 

0.25    0.22

24    16

Zinc (μg/l)5
744066

Freshwater values are a function of total hardness as calcium carbonate (CaCO3) mg/l and the WER. The minimum hardness allowed for use in the equation below shall be 25 and the maximum, hardness shall be 400 even when the actual ambient hardness is less than 25 or greater than 400.

Freshwater acute criterion μg/l
WER [e {0.8473[In(hardness)]+0.884}] (CFa)

Freshwater chronic criterion μg/l
WER [e{0.8473[In(hardness)]+0.884}] (CFc)

WER = Water Effect Ratio = 1 unless determined otherwise under 9VAC25-260-140 F

e = base e exponential function.

ln = log normal function

CFa = 0.978

CFc = 0.986

120 CaCO3 = 100

120 CaCO3 = 100

90
X WER

81
X WER

7,400

26,000

1One hour average concentration not to be exceeded more than once every 3 years on the average, unless otherwise noted.

2Four-day average concentration not to be exceeded more than once every 3 years on the average, unless otherwise noted.

3Criteria have been calculated to protect human health from toxic effects through drinking water and fish consumption, unless otherwise noted and apply in segments designated as PWS in 9VAC25-260-390-540.

4Criteria have been calculated to protect human health from toxic effects through fish consumption, unless otherwise noted and apply in all other surface waters not designated as PWS in 9VAC25-260-390-540.

5Acute and chronic saltwater and freshwater aquatic life criteria apply to the biologically available form of the metal and apply as a function of the pollutant's water effect ratio (WER) as defined in 9VAC25-260-140 F (WER X criterion). Metals measured as dissolved shall be considered to be biologically available, or, because local receiving water characteristics may otherwise affect the biological availability of the metal, the biologically available equivalent measurement of the metal can be further defined by determining a Water Effect Ratio (WER) and multiplying the numerical value shown in 9VAC25-260-140 B by the WER. Refer to 9VAC25-260-140 F. Values displayed above in the table are examples and correspond to a WER of 1.0. Metals criteria have been adjusted to convert the total recoverable fraction to dissolved fraction using a conversion factor. Criteria that change with hardness have the conversion factor listed in the table above.

6The flows listed below are default design flows for calculating steady state waste load allocations unless statistically valid methods are employed which demonstrate compliance with the duration and return frequency of the water quality criteria.

Aquatic Life:

Acute criteria

1Q10

Chronic criteria

7Q10

Chronic criteria (ammonia)

30Q10

Human Health:

Noncarcinogens

30Q5

Carcinogens

Harmonic mean

The following are defined for this section:

"1Q10" means the lowest flow averaged over a period of one day which on a statistical basis can be expected to occur once every 10 climatic years.

"7Q10" means the lowest flow averaged over a period of seven consecutive days that can be statistically expected to occur once every 10 climatic years.

"30Q5" means the lowest flow averaged over a period of 30 consecutive days that can be statistically expected to occur once every five climatic years.

"30Q10" means the lowest flow averaged over a period of 30 consecutive days that can be statistically expected to occur once every 10 climatic years.

"Averaged" means an arithmetic mean.

"Climatic year" means a year beginning on April 1 and ending on March 31.

7The criteria listed in this table are two significant digits. For other criteria that are referenced to other sections of this regulation in this table, all numbers listed as criteria values are significant.

8The fish tissue criterion for methylmercury applies to a concentration of 0.30 mg/kg as wet weight in edible tissue for species of fish and/or shellfish resident in a waterbody that are commonly eaten in the area and have commercial, recreational, or subsistence value.

C. Application of freshwater and saltwater numerical criteria. The numerical water quality criteria listed in subsection B of this section (excluding dissolved oxygen, pH, temperature) shall be applied according to the following classes of waters (see 9VAC25-260-50) and boundary designations:

 

CLASS OF WATERS

NUMERICAL CRITERIA

I and II (Estuarine Waters)

Saltwater criteria apply

II (Transition Zone)

More stringent of either the freshwater or saltwater criteria apply

II (Tidal Freshwater), III, IV, V, VI and VII

Freshwater criteria apply

 

The following describes the boundary designations for Class II, (estuarine, transition zone and tidal freshwater waters) by river basin:

1. Rappahannock Basin. Tidal freshwater is from the fall line of the Rappahannock River to the upstream boundary of the transition zone including all tidal tributaries that enter the tidal freshwater Rappahannock River.

Transition zone upstream boundary – 38° 4' 56.59"/-76° 58' 47.93" (430 feet east of Hutchinson Swamp) to 38° 5' 23.33"/-76° 58' 24.39" (0.7 miles upstream of Peedee Creek).

Transition zone downstream boundary - 37° 58' 45.80"/-76° 55' 28.75" (1,000 feet downstream of Jenkins Landing) to 37° 59' 20.07/-76° 53' 45.09" (0.33 miles upstream of Mulberry Point). All tidal waters that enter the transition zone are themselves transition zone waters.

Estuarine waters are from the downstream boundary of the transition zone to the mouth of the Rappahannock River (Buoy 6), including all tidal tributaries that enter the estuarine waters of the Rappahannock River.

2. York Basin. Tidal freshwater is from the fall line of the Mattaponi River at N37° 47' 20.03"/W77° 6' 15.16" (800 feet upstream of the Route 360 bridge in Aylett) to the upstream boundary of the Mattaponi River transition zone, and from the fall line of the Pamunkey River at N37° 41' 22.64" /W77° 12' 50.83" (2,000 feet upstream of Totopotomy Creek) to the upstream boundary of the Pamunkey River transition zone, including all tidal tributaries that enter the tidal freshwaters of the Mattaponi and Pamunkey Rivers.

Mattaponni River transition zone upstream boundary – N37° 39' 29.65"/W76° 52' 53.29" (1,000 feet upstream of Mitchell Hill Creek) to N37° 39' 24.20"/W76° 52' 55.87" (across from Courthouse Landing). Mattaponi River transition zone downstream boundary – N37° 32' 19.76"/W76° 47' 29.41" (old Lord Delaware Bridge, west side) to N37° 32' 13.25"/W76° 47' 10.30" (old Lord Delaware Bridge, east side).

Pamunkey River transition zone upstream boundary – N37° 32' 36.63"/W76° 58' 29.88" (Cohoke Marsh, 0.9 miles upstream of Turkey Creek) to N37° 32' 36.51"/W76° 58' 36.48" (0.75 miles upstream of creek at Cook Landing). Pamunkey River transition zone downstream boundary – N37° 31' 57.90"/ 76° 48' 38.22" (old Eltham Bridge, west side) to N37° 32' 6.25"/W76 48' 18.82" (old Eltham Bridge, east side).

All tidal tributaries that enter the transition zones of the Mattaponi and Pamunkey Rivers are themselves in the transition zone.

Estuarine waters are from the downstream boundary of the transition zones of the Mattaponi and Pamunkey Rivers to the mouth of the York River (Tue Marsh Light) including all tidal tributaries that enter the estuarine waters of the York River.

3. James Basin. Tidal Freshwater is from the fall line of the James River in the City of Richmond upstream of Mayo Bridge to the upstream boundary of the transition zone, including all tidal tributaries that enter the tidal freshwater James River.

James River transition zone upstream boundary – N37° 14' 28.25"/W76° 56' 44.47" (at Tettington) to N37° 13' 38.56"/W76° 56' 47.13" 0.3 miles downstream of Sloop Point.

Chickahominy River transition zone upstream boundary – N37° 25' 44.79"/W77° 1' 41.76" (Holly Landing).

Transition zone downstream boundary – N37° 12' 7.23"/W76° 37' 34.70" (near Carters Grove Home, 1.25 downstream of Grove Creek) to N37° 9' 17.23"/W76° 40' 13.45" (0.7 miles upstream of Hunnicutt Creek). All tidal waters that enter the transition zone are themselves transition zone waters.

Estuarine waters are from the downstream transition zone boundary to the mouth of the James River (Buoy 25) including all tidal tributaries that enter the estuarine waters of the James River.

4. Potomac Basin. Tidal Freshwater includes all tidal tributaries that enter the Potomac River from its fall line at the Chain Bridge (N38° 55' 46.28"/W77° 6' 59.23") to the upstream transition zone boundary near Quantico, Virginia.

Transition zone includes all tidal tributaries that enter the Potomac River from N38° 31' 27.05"/W77° 17' 7.06" (midway between Shipping Point and Quantico Pier) to N38° 23' 22.78"/W77° 1' 45.50" (one mile southeast of Mathias Point).

Estuarine waters includes all tidal tributaries that enter the Potomac River from the downstream transition zone boundary to the mouth of the Potomac River (Buoy 44B).

5. Chesapeake Bay, Atlantic Ocean, and small coastal basins. Estuarine waters include the Atlantic Ocean tidal tributaries, and the Chesapeake Bay and its small coastal basins from the Virginia state line to the mouth of the bay (a line from Cape Henry drawn through Buoys 3 and 8 to Fishermans Island), and its tidal tributaries, excluding the Potomac tributaries and those tributaries listed above.

6. Chowan River Basin. Tidal freshwater includes the Northwest River and its tidal tributaries from the Virginia-North Carolina state line to the free flowing portion, the Blackwater River and its tidal tributaries from the Virginia-North Carolina state line to the end of tidal waters at approximately state route 611 at river mile 20.90, the Nottoway River and its tidal tributaries from the Virginia-North Carolina state line to the end of tidal waters at approximately Route 674, and the North Landing River and its tidal tributaries from the Virginia-North Carolina state line to the Great Bridge Lock.

Transition zone includes Back Bay and its tributaries in the City of Virginia Beach to the Virginia-North Carolina state line.

D. Site-specific modifications to numerical water quality criteria.

1. The board may consider site-specific modifications to numerical water quality criteria in subsection B of this section where the applicant or permittee demonstrates that the alternate numerical water quality criteria are sufficient to protect all designated uses (see 9VAC25-260-10) of that particular surface water segment or body.

2. Any demonstration for site-specific human health criteria shall be restricted to a reevaluation of the bioconcentration or bioaccumulation properties of the pollutant. The exceptions to this restriction are for site-specific criteria for taste, odor, and aesthetic compounds noted by double asterisks in subsection B of this section and nitrates.

3. Procedures for promulgation and review of site-specific modifications to numerical water quality criteria resulting from subdivisions 1 and 2 of this subsection.

a. Proposals describing the details of the site-specific study shall be submitted to the board's staff for approval prior to commencing the study.

b. Any site-specific modification shall be promulgated as a regulation in accordance with the Administrative Process Act. All site-specific modifications shall be listed in 9VAC25-260-310 (Special standards and requirements).

E. Variances to water quality standards.

1. A variance from numeric criteria may be granted to a discharger if it can be demonstrated that one or more of the conditions in 9VAC25-260-10 H limit the attainment of one or more specific designated uses.

a. Variances shall apply only to the discharger to whom they are granted and shall be reevaluated and either continued, modified or revoked at the time of permit issuance. At that time the permittee shall make a showing that the conditions for granting the variance still apply.

b. Variances shall be described in the public notice published for the permit. The decision to approve a variance shall be subject to the public participation requirements of the Virginia Pollutant Discharge Elimination System (VPDES) Permit Regulation, 9VAC25-31 (Permit Regulation).

c. Variances shall not prevent the maintenance and protection of existing uses or exempt the discharger or regulated activity from compliance with other appropriate technology or water quality-based limits or best management practices.

d. Variances granted under this section shall not apply to new discharges.

e. Variances shall be submitted by the department's Division of Scientific Research or its successors to the Environmental Protection Agency for review and approval/disapproval.

f. A list of variances granted shall be maintained by the department's Division of Scientific Research or its successors.

2. None of the variances in this subsection shall apply to the halogen ban section (9VAC25-260-110) or temperature criteria in 9VAC25-260-50 if superseded by § 316(a) of the Clean Water Act requirements. No variances in this subsection shall apply to the criteria that are designed to protect human health from carcinogenic and noncarcinogenic toxic effects (subsection B of this section) with the exception of the metals, and the taste, odor, and aesthetic compounds noted by double asterisks and nitrates, listed in subsection B of this section.

F. Water effect ratio.

1. A water effects ratio (WER) shall be determined by measuring the effect of receiving water (as it is or will be affected by any discharges) on the bioavailability or toxicity of a metal by using standard test organisms and a metal to conduct toxicity tests simultaneously in receiving water and laboratory water. The ratio of toxicities of the metal(s) in the two waters is the WER (toxicity in receiving water divided by toxicity in laboratory water = WER). Once an acceptable WER for a metal is established, the numerical value for the metal in subsection B of this section is multiplied by the WER to produce an instream concentration that will protect designated uses. This instream concentration shall be utilized in permitting decisions.

2. The WER shall be assigned a value of 1.0 unless the applicant or permittee demonstrates to the department's satisfaction in a permit proceeding that another value is appropriate, or unless available data allow the department to compute a WER for the receiving waters. The applicant or permittee is responsible for proposing and conducting the study to develop a WER. The study may require multiple testing over several seasons. The applicant or permittee shall obtain the department's Division of Scientific Research or its successor approval of the study protocol and the final WER.

3. The Permit Regulation at 9VAC25-31-230 C requires that permit limits for metals be expressed as total recoverable measurements. To that end, the study used to establish the WER may be based on total recoverable measurements of the metals.

4. The Environmental Protection Agency views the WER in any particular case as a site-specific criterion. Therefore, the department's Division of Scientific Research or its successor shall submit the results of the study to the Environmental Protection Agency for review and approval/disapproval within 30 days of the receipt of certification from the state's Office of the Attorney General. Nonetheless, the WER is established in a permit proceeding, shall be described in the public notice associated with the permit proceeding, and applies only to the applicant or permittee in that proceeding. The department's action to approve or disapprove a WER is a case decision, not an amendment to the present regulation.

The decision to approve or disapprove a WER shall be subject to the public participation requirements of the Permit Regulation, 9VAC25-31-260 et seq. A list of final WERs will be maintained by the department's Division of Scientific Research or its successor.

5. A WER shall not be used for the freshwater and saltwater chronic mercury criteria or the freshwater acute and chronic selenium criteria.

 

9VAC25-260-155. Ammonia surface water quality criteria.

 A. The Department of Environmental Quality, after consultation with the Virginia Department of Game and Inland Fisheries and the U.S. Fish and Wildlife Service, has determined that the majority of Virginia freshwaters are likely to contain, or have contained in the past, freshwater mussel species in the family Unionidae and contain early life stages of fish during most times of the year. Therefore, the ammonia criteria presented in subsections B and C of this section are designed to provide protection to these species and life stages. In an instance where it can be adequately demonstrated that either freshwater mussels or early life stages of fish are not present in a specific waterbody, potential options for alternate, site-specific criteria are presented in subsection D of this section. Acute criteria are a one-hour average concentration not to be exceeded more than once every three years1 on the average, and chronic criteria are 30-day average concentrations not to be exceeded more than once every three years on the average2. 

  A.   B.  The one-hour average concentration of total ammonia nitrogen (in mg N/L) in freshwater shall not exceed, more than once every three years on the average1, the  acute criteria for total ammonia (in mg N/L) for freshwaters with trout absent or present are below:

Acute Ammonia Freshwater Criteria
Total Ammonia Nitrogen (mg N/L)

pH

Trout Present

Trout Absent

6.5

32.6

48.8

6.6

31.3

46.8

6.7

29.8

44.6

6.8

28.1

42.0

6.9

26.2

39.1

7.0

24.1

36.1

7.1

22.0

32.8

7.2

19.7

29.5

7.3

17.5

26.2

7.4

15.4

23.0

7.5

13.3

19.9

7.6

11.4

17.0

7.7

9.65

14.4

7.8

8.11

12.1

7.9

6.77

10.1

8.0

5.62

8.40

8.1

4.64

6.95

8.2

3.83

5.72

8.3

3.15

4.71

8.4

2.59

3.88

8.5

2.14

3.20

8.6

1.77

2.65

8.7

1.47

2.20

8.8

1.23

1.84

8.9

1.04

1.56

9.0

0.885

1.32

  

 Acute Ammonia Freshwater Criteria
Total Ammonia Nitrogen (mg N/L)

TROUT ABSENT

Temperature (°C)

pH

0-10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

6.5

51

48

44

41

37

34

32

29

27

25

23

21

19

18

16

15

14

13

12

11

9.9

6.6

49

46

42

39

36

33

30

28

26

24

22

20

18

17

16

14

13

12

11

10

9.5

6.7

46

44

40

37

34

31

29

27

24

22

21

19

18

16

15

14

13

12

11

9.8

9.0

6.8

44

41

38

35

32

30

27

25

23

21

20

18

17

15

14

13

12

11

10

9.2

8.5

6.9

41

38

35

32

30

28

25

23

21

20

18

17

15

14

13

12

11

10

9.4

8.6

7.9

7.0

38

35

33

30

28

25

23

21

20

18

17

15

14

13

12

11

10

9.4

8.6

7.9

7.3

7.1

34

32

30

27

25

23

21

20

18

17

15

14

13

12

11

10

9.3

8.5

7.9

7.2

6.7

7.2

31

29

27

25

23

21

19

18

16

15

14

13

12

11

9.8

9.1

8.3

7.7

7.1

6.5

6.0

7.3

27

26

24

22

20

18

17

16

14

13

12

11

10

9.5

8.7

8.0

7.4

6.8

6.3

5.8

5.3

7.4

24

22

21

19

18

16

15

14

13

12

11

9.8

9.0

8.3

7.7

7.0

6.5

6.0

5.5

5.1

4.7

7.5

21

19

18

17

15

14

13

12

11

10

9.2

8.5

7.8

7.2

6.6

6.1

5.6

5.2

4.8

4.4

4.0

7.6

18

17

15

14

13

12

11

10

9.3

8.6

7.9

7.3

6.7

6.2

5.7

5.2

4.8

4.4

4.1

3.8

3.5

7.7

15

14

13

12

11

10

9.3

8.6

7.9

7.3

6.7

6.2

5.7

5.2

4.8

4.4

4.1

3.8

3.5

3.2

2.9

7.8

13

12

11

10

9.3

8.5

7.9

7.2

6.7

6.1

5.6

5.2

4.8

4.4

4.0

3.7

3.4

3.2

2.9

2.7

2.5

7.9

11

9.9

9.1

8.4

7.7

7.1

6.6

3.0

5.6

5.1

4.7

4.3

4.0

3.7

3.4

3.1

2.9

2.6

2.4

2.2

2.1

8.0

8.8

8.2

7.6

7.0

6.4

5.9

5.4

5.0

4.6

4.2

3.9

3.6

3.3

3.0

2.8

2.6

2.4

2.2

2.0

1.9

1.7

8.1

7.2

6.8

6.3

5.8

5.3

4.9

4.5

4.1

3.8

3.5

3.2

3.0

2.7

2.5

2.3

2.1

2.0

1.8

1.7

1.5

1.4

8.2

6.0

5.6

5.2

4.8

4.4

4.0

3.7

3.4

3.1

2.9

2.7

2.4

2.3

2.1

1.9

1.8

1.6

1.5

1.4

1.3

1.2

8.3

4.9

4.6

4.3

3.9

3.6

3.3

3.1

2.8

2.6

2.4

2.2

2.0

1.9

1.7

1.6

1.4

1.3

1.2

1.1

1.0

0.96

8.4

4.1

3.8

3.5

3.2

3.0

2.7

2.5

2.3

2.1

2.0

1.8

1.7

1.5

1.4

1.3

1.2

1.1

1.0

0.93

0.86

0.79

8.5

3.3

3.1

2.9

2.7

2.4

2.3

2.1

1.9

1.8

1.6

1.5

1.4

1.3

1.2

1.1

0.98

0.90

0.83

0.77

0.71

0.65

8.6

2.8

2.6

2.4

2.2

2.0

1.9

1.7

1.6

1.5

1.3

1.2

1.1

1.0

0.96

0.88

0.81

0.75

0.69

0.63

0.58

0.54

8.7

2.3

2.2

2.0

1.8

1.7

1.6

1.4

1.3

1.2

1.1

1.0

0.94

0.87

0.80

0.74

0.68

0.62

0.57

0.53

0.49

0.45

8.8

1.9

1.8

1.7

1.5

1.4

1.3

1.2

1.1

1.0

0.93

0.86

0.79

0.73

0.67

0.62

0.57

0.52

0.48

0.44

0.41

0.37

8.9

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.93

0.85

0.79

0.72

0.67

0.61

0.56

0.52

0.48

0.44

0.40

0.37

0.34

0.32

9.0

1.4

1.3

1.2

1.1

1.0

0.93

0.86

0.79

0.73

0.67

0.62

0.57

0.52

0.48

0.44

0.41

0.37

0.34

0.32

0.29

0.27

 

 Acute Ammonia Freshwater Criteria
Total Ammonia Nitrogen (mg N/L)

TROUT PRESENT

Temperature (°C)

pH

0-14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

6.5

33

33

32

29

27

25

23

21

19

18

16

15

14

13

12

11

9.9

6.6

31

31

30

28

26

24

22

20

18

17

16

14

13

12

11

10

9.5

6.7

30

30

29

27

24

22

21

19

18

16

15

14

13

12

11

9.8

9.0

6.8

28

28

27

25

23

21

20

18

17

15

14

13

12

11

10

9.2

8.5

6.9

26

26

25

23

21

20

18

17

15

14

13

12

11

10

9.4

8.6

7.9

7.0

24

24

23

21

20

18

17

15

14

13

12

11

10

9.4

8.6

8.0

7.3

7.1

22

22

21

20

18

17

15

14

13

12

11

10

9.3

8.5

7.9

7.2

6.7

7.2

20

20

19

18

16

15

14

13

12

11

9.8

9.1

8.3

7.7

7.1

6.5

6.0

7.3

18

18

17

16

14

13

12

11

10

9.5

8.7

8.0

7.4

6.8

6.3

5.8

5.3

7.4

15

15

15

14

13

12

11

9.8

9.0

8.3

7.7

7.0

6.5

6.0

5.5

5.1

4.7

7.5

13

13

13

12

11

10

9.2

8.5

7.8

7.2

6.6

6.1

5.6

5.2

4.8

4.4

4.0

7.6

11

11

11

10

9.3

8.6

7.9

7.3

6.7

6.2

5.7

5.2

4.8

4.4

4.1

3.8

3.5

7.7

9.6

9.6

9.3

8.6

7.9

7.3

6.7

6.2

5.7

5.2

4.8

4.4

4.1

3.8

3.5

3.2

3.0

7.8

8.1

8.1

7.9

7.2

6.7

6.1

5.6

5.2

4.8

4.4

4.0

3.7

3.4

3.2

2.9

2.7

2.5

7.9

6.8

6.8

6.6

6.0

5.6

5.1

4.7

4.3

4.0

3.7

3.4

3.1

2.9

2.6

2.4

2.2

2.1

8.0

5.6

5.6

5.4

5.0

4.6

4.2

3.9

3.6

3.3

3.0

2.8

2.6

2.4

2.2

2.0

1.9

1.7

8.1

4.6

4.6

4.5

4.1

3.8

3.5

3.2

3.0

2.7

2.5

2.3

2.1

2.0

1.8

1.7

1.5

1.4

8.2

3.8

3.8

3.7

3.5

3.1

2.9

2.7

2.4

2.3

2.1

1.9

1.8

1.6

1.5

1.4

1.3

1.2

8.3

3.1

3.1

3.1

2.8

2.6

2.4

2.2

2.0

1.9

1.7

1.6

1.4

1.3

1.2

1.1

1.0

0.96

8.4

2.6

2.6

2.5

2.3

2.1

2.0

1.8

1.7

1.5

1.4

1.3

1.2

1.1

1.0

0.93

0.86

0.79

8.5

2.1

2.1

2.1

1.9

1.8

1.6

1.5

1.4

1.3

1.2

1.1

0.98

0.90

0.83

0.77

0.71

0.65

8.6

1.8

1.8

1.7

1.6

1.5

1.3

1.2

1.1

1.0

0.96

0.88

0.81

0.75

0.69

0.63

0.59

0.54

8.7

1.5

1.5

1.4

1.3

1.2

1.1

1.0

0.94

0.87

0.80

0.74

0.68

0.62

0.57

0.53

0.49

0.45

8.8

1.2

1.2

1.2

1.1

1.0

0.93

0.86

0.79

0.73

0.67

0.62

0.57

0.52

0.48

0.44

0.41

0.37

8.9

1.0

1.0

1.0

0.93

0.85

0.79

0.72

0.67

0.61

0.56

0.52

0.48

0.44

0.40

0.37

0.34

0.32

9.0

0.88

0.88

0.86

0.79

0.73

0.67

0.62

0.57

0.52

0.48

0.44

0.41

0.37

0.34

0.32

0.29

0.27  

 
The acute criteria for trout present shall apply to all Class V-Stockable Trout Waters and Class VI-Natural Trout Waters as listed in 9VAC25-260-390 through 9VAC25-260-540. The acute criteria for trout absent apply to all other fresh waters.

To calculate total ammonia nitrogen acute criteria values in freshwater at different pH values than those listed in this subsection, use the following formulas equations and round the result to two significant digits:

Where trout are present absent:

Acute Criterion Concentration (mg N/L) =

0.275

+

39.0

 

(1 + 107.204-pH)

(1 + 10pH-7.204)

 

0.7249 X (


 0.0114

+


1.6181

) X MIN

1 + 107.204-pH

1 + 10pH-7.204

Where MIN = 51.93 or 23.12 X 100.036 X (20 – T), whichever is less.

T = Temperature in oC

Or where trout are absent present, whichever of the below calculation results is less:

Acute Criterion Concentration (mg N/L) =

0.411

+

58.4

(1 + 107.204-pH)

(1 + 10pH-7.204)

 

 (

0.275

+

39.0

)

1 + 107.204-pH

1 + 10pH-7.204

Or

0.7249 X (

0.0114

+

1.6181

) X (23.12 X 100.036X(20 – T))

1 + 107.204-pH

1 + 10pH-7.204

T = Temperature in oC

1The default design flow for calculating steady state waste load allocations for the acute ammonia criterion is the 1Q10 (see 9VAC25-260-140 B footnote 10) unless statistically valid methods are employed which demonstrate compliance with the duration and return frequency of the water quality criteria.

B.C. ] The 30-day average concentration of chronic criteria for total ammonia nitrogen (in mg N/L) where freshwater mussels and early life stages of fish are present in freshwater shall not exceed, more than once every three years on the average2, the chronic criteria are below:

Chronic Ammonia Freshwater Criteria
Early Life Stages of Fish Present
Total Ammonia Nitrogen (mg N/L)

 

Temperature (°C)

pH

0

14

16

18

20

22

24

26

28

30

6.5

6.67

6.67

6.06

5.33

4.68

4.12

3.62

3.18

2.80

2.46

6.6

6.57

6.57

5.97

5.25

4.61

4.05

3.56

3.13

2.75

2.42

6.7

6.44

6.44

5.86

5.15

4.52

3.98

3.50

3.07

2.70

2.37

6.8

6.29

6.29

5.72

5.03

4.42

3.89

3.42

3.00

2.64

2.32

6.9

6.12

6.12

5.56

4.89

4.30

3.78

3.32

2.92

2.57

2.25

7.0

5.91

5.91

5.37

4.72

4.15

3.65

3.21

2.82

2.48

2.18

7.1

5.67

5.67

5.15

4.53

3.98

3.50

3.08

2.70

2.38

2.09

7.2

5.39

5.39

4.90

4.31

3.78

3.33

2.92

2.57

2.26

1.99

7.3

5.08

5.08

4.61

4.06

3.57

3.13

2.76

2.42

2.13

1.87

7.4

4.73

4.73

4.30

3.78

3.32

2.92

2.57

2.26

1.98

1.74

7.5

4.36

4.36

3.97

3.49

3.06

2.69

2.37

2.08

1.83

1.61

7.6

3.98

3.98

3.61

3.18

2.79

2.45

2.16

1.90

1.67

1.47

7.7

3.58

3.58

3.25

2.86

2.51

2.21

1.94

1.71

1.50

1.32

7.8

3.18

3.18

2.89

2.54

2.23

1.96

1.73

1.52

1.33

1.17

7.9

2.80

2.80

2.54

2.24

1.96

1.73

1.52

1.33

1.17

1.03

8.0

2.43

2.43

2.21

1.94

1.71

1.50

1.32

1.16

1.02

0.897

8.1

2.10

2.10

1.91

1.68

1.47

1.29

1.14

1.00

0.879

0.773

8.2

1.79

1.79

1.63

1.43

1.26

1.11

0.973

0.855

0.752

0.661

8.3

1.52

1.52

1.39

1.22

1.07

0.941

0.827

0.727

0.639

0.562

8.4

1.29

1.29

1.17

1.03

0.906

0.796

0.700

0.615

0.541

0.475

8.5

1.09

1.09

0.990

0.870

0.765

0.672

0.591

0.520

0.457

0.401

8.6

0.920

0.920

0.836

0.735

0.646

0.568

0.499

0.439

0.386

0.339

8.7

0.778

0.778

0.707

0.622

0.547

0.480

0.422

0.371

0.326

0.287

8.8

0.661

0.661

0.601

0.528

0.464

0.408

0.359

0.315

0.277

0.244

8.9

0.565

0.565

0.513

0.451

0.397

0.349

0.306

0.269

0.237

0.208

9.0

0.486

0.486

0.442

0.389

0.342

0.300

0.264

0.232

0.204

0.179

 


 Chronic Ammonia Freshwater Criteria
Mussels and Early Life Stages of Fish Present

Total Ammonia Nitrogen (mg N/L)

Temperature (°C)

pH

0-7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

6.5

4.9

4.6

4.3

4.1

3.8

3.6

3.3

3.1

2.9

2.8

2.6

2.4

2.3

2.1

2.0

1.9

1.8

1.6

1.5

1.5

1.4

1.3

1.2

1.1

6.6

4.8

4.5

4.3

4.0

3.8

3.5

3.3

3.1

2.9

2.7

2.5

2.4

2.2

2.1

2.0

1.8

1.7

1.6

1.5

1.4

1.3

1.3

1.2

1.1

6.7

4.8

4.5

4.2

3.9

3.7

3.5

3.2

3.0

2.8

2.7

2.5

2.3

2.2

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

6.8

4.6

4.4

4.1

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.3

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.1

6.9

4.5

4.2

4.0

3.7

3.5

3.3

3.1

2.9

2.7

2.5

2.4

2.2

2.1

2.0

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

1.0

7.0

4.4

4.1

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.3

2.2

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.1

0.99

7.1

4.2

3.9

3.7

3.5

3.2

3.0

2.8

2.7

2.5

2.3

2.2

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

1.0

0.95

7.2

4.0

3.7

3.5

3.3

3.1

2.9

2.7

2.5

2.4

2.2

2.1

2.0

1.8

1.7

1.6

1.5

1.4

1.3

1.3

1.2

1.1

1.0

0.96

0.90

7.3

3.8

3.5

3.3

3.1

2.9

2.7

2.6

2.4

2.2

2.1

2.0

1.8

1.7

1.6

1.5

1.4

1.3

1.3

1.2

1.1

1.0

0.97

0.91

0.85

7.4

3.5

3.3

3.1

2.9

2.7

2.5

2.4

2.2

2.1

2.0

1.8

1.7

1.6

1.5

1.4

1.3

1.3

1.2

1.1

1.0

0.96

0.90

0.85

0.79

7.5

3.2

3.0

2.8

2.7

2.5

2.3

2.2

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

1.0

0.95

0.89

0.83

0.78

0.73

7.6

2.9

2.8

2.6

2.4

2.3

2.1

2.0

1.9

1.8

1.6

1.5

1.4

1.4

1.3

1.2

1.1

1.1

0.98

0.92

0.86

0.81

0.76

0.71

0.67

7.7

2.6

2.4

2.3

2.2

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.1

1.0

0.94

0.88

0.83

0.78

0.73

0.68

0.64

0.60

7.8

2.3

2.2

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

1.0

0.95

0.89

0.84

0.79

0.74

0.69

0.65

0.61

0.57

0.53

7.9

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.2

1.1

1.0

0.95

0.89

0.84

0.79

0.74

0.69

0.65

0.61

0.57

0.53

0.50

0.47

8.0

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.1

1.0

0.94

0.88

0.83

0.78

0.73

0.68

0.64

0.60

0.56

0.53

0.50

0.44

0.44

0.41

8.1

1.5

1.5

1.4

1.3

1.2

1.1

1.1

0.99

0.92

0.87

0.81

0.76

0.71

0.67

0.63

0.59

0.55

0.52

0.49

0.46

0.43

0.40

0.38

0.35

8.2

1.3

1.2

1.2

1.1

1.0

0.96

0.90

0.84

0.79

0.74

0.70

0.65

0.61

0.57

0.54

0.50

0.47

0.44

0.42

0.39

0.37

0.34

0.32

0.30

8.3

1.1

1.1

0.99

0.93

0.87

0.82

0.76

0.72

0.67

0.63

0.59

0.55

0.52

0.49

0.46

0.43

0.40

0.38

0.35

0.33

0.31

0.29

0.27

0.26

8.4

0.95

0.89

0.84

0.79

0.74

0.69

0.65

0.61

0.57

0.53

0.50

0.47

0.44

0.41

0.39

0.36

0.34

0.32

0.30

0.28

0.26

0.25

0.23

0.22

8.5

0.80

0.75

0.71

0.67

0.62

0.58

0.55

0.51

0.48

0.45

0.42

0.40

0.37

0.35

0.33

0.31

0.29

0.27

0.25

0.24

0.22

0.21

0.20

0.18

8.6

0.68

0.64

0.60

0.56

0.53

0.49

0.46

0.43

0.41

0.38

0.36

0.33

0.31

0.29

0.28

0.26

0.24

0.23

0.21

0.20

0.19

0.18

0.16

0.15

8.7

0.57

0.54

0.51

0.47

0.44

0.42

0.39

0.37

0.34

0.32

0.30

0.28

0.27

0.25

0.23

0.22

0.21

0.19

0.18

0.17

0.16

0.15

0.14

0.13

8.8

0.49

0.46

0.43

0.40

0.38

0.35

0.33

0.31

0.29

0.27

0.26

0.24

0.23

0.21

0.20

0.19

0.17

0.16

0.15

0.14

0.13

0.13

0.12

0.11

8.9

0.42

0.39

0.37

0.34

0.32

0.30

0.28

0.27

0.25

0.23

0.22

0.21

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.12

0.11

0.10

0.09

9.0

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0.23

0.21

0.20

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.11

0.10

0.09

0.09

0.08


To calculate total ammonia nitrogen chronic criteria values in freshwater when fish freshwater mussels and early life stages of fish are present at different pH and temperature values than those listed in this subsection, use the following formulas equation and round the result to two significant digits:

Chronic Criteria Concentration =

(

0.0577

+

2.487

 )

x MIN

(1 + 107.688-pH)

(1 + 10pH-7.688)

Where MIN = 2.85 or 1.45 x 100.028(25-T), whichever is less.

0.8876 X (

0.0278

+

1.1994

) X (2.126 X 100.028 X (20 - MAX(T,7)))

1 + 107.688-pH

1 + 10pH-7.688

Where MAX = 7 or temperature in degrees Celsius, whichever is greater.

T = temperature in °C

2The default design flow for calculating steady state waste load allocations for the chronic ammonia criterion where early life stages of fish are present is the 30Q10 (see 9VAC25-260-140 B footnote 10) unless statistically valid methods are employed which demonstrate compliance with the duration and return frequency of the water quality criteria.

 

D. Site-specific considerations and alternate criteria. If it can be adequately demonstrated that freshwater mussels or early life stages of fish are not present at a site, then alternate site-specific criteria can be considered using the information provided in this subsection. Recalculated site-specific criteria shall provide for the attainment and maintenance of the water quality standards of downstream waters.

1. Site-specific modifications to the ambient water quality criteria for ammonia to account for the absence of freshwater mussels or early life stages of fish shall be conducted in accordance with the procedures contained in this subdivision. Because the department presumes that most state waterbodies have freshwater mussels and early life stages of fish present during most times of the year, the criteria shall be calculated assuming freshwater mussels and early life stages of fish are present using subsections B and C of this section unless the following demonstration that freshwater mussels or early life stages of fish are absent is successfully completed. Determination of the absence of freshwater mussels requires special field survey methods. This determination must be made after an adequate survey of the waterbody is conducted by an individual certified by the Virginia Department of Game and Inland Fisheries (DGIF) for freshwater mussel identification and surveys. Determination of absence of freshwater mussels will be done in consultation with the DGIF. Early life stages of fish are defined in subdivision 2 of this subsection. Modifications to the ambient water quality criteria for ammonia based on the presence or absence of early life stages of fish shall only apply at temperatures below 15°C.

a. During the review of any new or existing activity that has a potential to discharge ammonia in amounts that may cause or contribute to a violation of the ammonia criteria contained in subsection B of this section, the department may examine data from the following approved sources in subdivisions 1 a (1) through (5) of this subsection or may require the gathering of data in accordance with subdivisions 1 a (1) through (5) on the presence or absence of early life stages of fish in the affected waterbody.

(1) Species and distribution data contained in the Virginia Department of Game and Inland Fisheries Wildlife Information System database.

(2) Species and distribution data contained in Freshwater Fishes of Virginia, 1994.

(3) Data and fish species distribution maps contained in Handbook for Fishery Biology, Volume 3, 1997.

(4) Field data collected in accordance with U.S. EPA's Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers, Second Edition, EPA 841-B-99-002. Field data must comply with all quality assurance and quality control criteria.

(5) The American Society for Testing and Materials (ASTM) Standard E-1241-88, Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes.

b. If data or information from sources other than subdivisions 1 a (1) through (5) of this subsection are considered, then any resulting site-specific criteria modifications shall be reviewed and adopted in accordance with the site-specific criteria provisions in 9VAC25-260-140 D, and submitted to EPA for review and approval.

c. If the department determines that the data and information obtained from subdivisions 1 a (1) through (5) of this subsection demonstrate that there are periods of each year when no early life stages are expected to be present for any species of fish that occur at the site, the department shall issue a notice to the public and make available for public comment the supporting data and analysis along with the department's preliminary decision to authorize the site-specific modification to the ammonia criteria. Such information shall include, at a minimum:

(1) Sources of data and information.

(2) List of fish species that occur at the site as defined in subdivision 3 of this subsection.

(3) Definition of the site. Definition of a "site" can vary in geographic size from a stream segment to a watershed to an entire eco-region.

(4) Duration of early life stage for each species in subdivision 1 c (2) of this subsection.

(5) Dates when early life stages of fish are expected to be present for each species in subdivision 1 c (2) of this subsection.

(6) Based on subdivision 1 c (5) of this subsection, identify the dates (beginning date, ending date), if any, where no early life stages are expected to be present for any of the species identified in subdivision 1 c (2) of this subsection.

d. If, after reviewing the public comments received in subdivision 1 c of this subsection and supporting data and information, the department determines that there are times of the year where no early life stages are expected to be present for any fish species that occur at the site, then the applicable ambient water quality criteria for ammonia for those time periods shall be calculated using the table in this subsection, or the formula for calculating the chronic criterion concentration for ammonia when early life stages of fish are absent.

e. The department shall maintain a comprehensive list of all sites where the department has determined that early life stages of fish are absent. For each site the list will identify the waterbodies affected and the corresponding times of the year that early life stages of fish are absent. This list is available either upon request from the Office of Water Quality Programs at 629 East Main Street, Richmond, VA 23219, or from the department website at http://www.deq.virginia.gov/programs/water/waterqualityinformationtmdls/waterqualitystandards.aspx.

2. The duration of the "early life stages" extends from the beginning of spawning through the end of the early life stages. The early life stages include the prehatch embryonic period, the post-hatch free embryo or yolk-sac fry, and the larval period, during which the organism feeds. Juvenile fish, which are anatomically similar to adults, are not considered an early life stage. The duration of early life stages can vary according to fish species. The department considers the sources of information in subdivisions 1 a (1) through (5) of this subsection to be the only acceptable sources of information for determining the duration of early life stages of fish under this procedure.

3. "Occur at the site" includes the species, genera, families, orders, classes, and phyla that are usually present at the site; are present at the site only seasonally due to migration; are present intermittently because they periodically return to or extend their ranges into the site; or were present at the site in the past or are present in nearby bodies of water, but are not currently present at the site due to degraded conditions, and are expected to return to the site when conditions improve. "Occur at the site" does not include taxa that were once present at the site but cannot exist at the site now due to permanent physical alteration of the habitat at the site.

4. Any modifications to ambient water quality criteria for ammonia in subdivision 1 of this subsection shall not likely jeopardize the continued existence of any federal or state listed, threatened, or endangered species or result in the destruction or adverse modification of such species' critical habitats.

5. Site-specific modifications to the ambient water quality criteria for ammonia to account for the absence of freshwater mussels shall be conducted in accordance with the procedures contained in this subdivision. Because the department presumes that most state waterbodies have freshwater mussel species, the criteria shall be calculated assuming mussels are present using subsections B and C of this section unless the demonstration that freshwater mussels are absent is successfully completed and accepted by DEQ and DGIF.

6. Equations for calculating ammonia criteria for four different site-specific scenarios are provided below as follows: (i) acute criteria when mussels are absent but trout are present, (ii) acute criteria when mussels and trout are absent, (iii) chronic criteria when mussels are absent and early life stages of fish are present, and (iv) chronic criteria when mussels and early life stages of fish are absent. Additional information regarding site-specific criteria can be reviewed in appendix N (pages 225-242) of the EPA Aquatic Life Ambient Water Quality Criteria to Ammonia--Freshwater 2013 (EPA 822-R-13-001).

a. Acute criteria: freshwater mussels absent and trout present.

To calculate total ammonia nitrogen acute criteria values (in mg N/L) in freshwater with freshwater mussels absent (procedures for making this determination are in subdivisions 1 through 5 of this subsection) and trout present, use the equations below. The acute criterion is the lesser of the calculation results below. Round the result to two significant digits.

 (

0.275

+

39

)

1 + 107.204-pH

1 + 10pH-7.204

Or

0.7249 X (

0.0114

+

1.6181

) X (62.15 X 100.036X(20 – T))

1 + 107.204-pH

1 + 10pH-7.204

b. Acute criteria: freshwater mussels absent and trout absent.

To calculate total ammonia nitrogen acute criteria values (in mg N/L) in freshwater where freshwater mussels are absent and trout are absent, use the following equation. Round the result to two significant digits.

0.7249 X (

0.0114

+

1.6181

) X MIN

1 + 107.204-pH

1 + 10pH-7.204

Where MIN = 51.93 or 62.15 X 100.036 X (20 – T), whichever is less.

T = Temperature in oC.

c. Chronic criteria: freshwater mussels absent and early life stages of fish present.

C. The 30-day average concentration of The chronic criteria for total ammonia nitrogen (in mg N/L) where early life stages of fish freshwater mussels are absent (procedures for making this determination are in subdivisions 1 through 4 5 of this subsection) in freshwater shall not exceed , more than once every three years on the average3, the chronic criteria concentration values calculated using the equation below :. Round the result to two significant digits.

Chronic Ammonia Freshwater Criteria
Early Life Stages of Fish Absent
Total Ammonia Nitrogen (mg N/L)

Temperature (°C)

pH

0-7

8

9

10

11

12

13

14

15

16

6.5

10.8

10.1

9.51

8.92

8.36

7.84

7.35

6.89

6.46

6.06

6.6

10.7

9.99

9.37

8.79

8.24

7.72

7.24

6.79

6.36

5.97

6.7

10.5

9.81

9.20

8.62

8.08

7.58

7.11

6.66

6.25

5.86

6.8

10.2

9.58

8.98

8.42

7.90

7.40

6.94

6.51

6.10

5.72

6.9

9.93

9.31

8.73

8.19

7.68

7.20

6.75

6.33

5.93

5.56

7.0

9.60

9.00

8.43

7.91

7.41

6.95

6.52

6.11

5.73

5.37

7.1

9.20

8.63

8.09

7.58

7.11

6.67

6.25

5.86

5.49

5.15

7.2

8.75

8.20

7.69

7.21

6.76

6.34

5.94

5.57

5.22

4.90

7.3

8.24

7.73

7.25

6.79

6.37

5.97

5.60

5.25

4.92

4.61

7.4

7.69

7.21

6.76

6.33

5.94

5.57

5.22

4.89

4.59

4.30

7.5

7.09

6.64

6.23

5.84

5.48

5.13

4.81

4.51

4.23

3.97

7.6

6.46

6.05

5.67

5.32

4.99

4.68

4.38

4.11

3.85

3.61

7.7

5.81

5.45

5.11

4.79

4.49

4.21

3.95

3.70

3.47

3.25

7.8

5.17

4.84

4.54

4.26

3.99

3.74

3.51

3.29

3.09

2.89

7.9

4.54

4.26

3.99

3.74

3.51

3.29

3.09

2.89

2.71

2.54

8.0

3.95

3.70

3.47

3.26

3.05

2.86

2.68

2.52

2.36

2.21

8.1

3.41

3.19

2.99

2.81

2.63

2.47

2.31

2.17

2.03

1.91

8.2

2.91

2.73

2.56

2.40

2.25

2.11

1.98

1.85

1.74

1.63

8.3

2.47

2.32

2.18

2.04

1.91

1.79

1.68

1.58

1.48

1.39

8.4

2.09

1.96

1.84

1.73

1.62

1.52

1.42

1.33

1.25

1.17

8.5

1.77

1.66

1.55

1.46

1.37

1.28

1.20

1.13

1.06

0.990

8.6

1.49

1.40

1.31

1.23

1.15

1.08

1.01

0.951

0.892

0.836

8.7

1.26

1.18

1.11

1.04

0.976

0.915

0.858

0.805

0.754

0.707

8.8

1.07

1.01

0.944

0.885

0.829

0.778

0.729

0.684

0.641

0.601

8.9

0.917

0.860

0.806

0.756

0.709

0.664

0.623

0.584

0.548

0.513

9.0

0.790

0.740

0.694

0.651

0.610

0.572

0.536

0.503

0.471

0.442

At 15°C and above, the criterion for fish early life stages absent is the same as the criterion for fish early life stages present.

To calculate total ammonia nitrogen chronic criteria values in freshwater when fish early life stages are absent at different pH and temperature values than those listed in this subsection, use the following formulas:

Chronic Criteria Concentration =

(

0.0577

+

2.487

)

x 1.45(100.028(25-MAX))

(1 + 107.688-pH)

(1 + 10pH-7.688)

MAX = temperature in °C or 7, whichever is greater.

0.9405 X (

0.0278

+

1.1994

) X MIN

1 + 107.688-pH

1 + 10pH-7.688

Where MIN = 6.920 or 7.547 X 100.028 x (20 – T) whichever is less

T = temperature in °C

3The default design flow for calculating steady state waste load allocations for the chronic ammonia criterion where early life stages of fish are absent is the 30Q10 (see 9VAC25-260-140 B footnote 10) unless statistically valid methods are employed that demonstrate compliance with the duration and return frequency of the water quality criteria.

1. Site-specific modifications to the ambient water quality criteria for ammonia to account for the absence of early life stages of fish shall be conducted in accordance with the procedures contained in this subdivision. Because the department presumes that most state waterbodies have early life stages of fish present during most times of the year, the criteria shall be calculated assuming early life stages of fish are present using subsection B of this section unless the following demonstration that early life stages are absent is successfully completed. Early life stages of fish are defined in subdivision 2 of this subsection. Modifications to the ambient water quality criteria for ammonia based on the presence or absence of early life stages of fish shall only apply at temperatures below 15°C.

a. During the review of any new or existing activity that has a potential to discharge ammonia in amounts that may cause or contribute to a violation of the ammonia criteria contained in subsection B of this section, the department may examine data from the following approved sources in subdivisions 1 a (1) through (5) of this subsection or may require the gathering of data in accordance with subdivisions 1 a (1) through (5) on the presence or absence of early life stages of fish in the affected waterbody.

(1) Species and distribution data contained in the Virginia Department of Game and Inland Fisheries Wildlife Information System database.

(2) Species and distribution data contained in Freshwater Fishes of Virginia, 1994.

(3) Data and fish species distribution maps contained in Handbook for Fishery Biology, Volume 3, 1997.

(4) Field data collected in accordance with U.S. EPA's Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers, Second Edition, EPA 841-B-99-002. Field data must comply with all quality assurance/quality control criteria.

(5) The American Society for Testing and Materials (ASTM) Standard E-1241-88, Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes.

b. If data or information from sources other than subdivisions 1 a (1) through (5) of this subsection are considered, then any resulting site-specific criteria modifications shall be reviewed and adopted in accordance with the site-specific criteria provisions in 9VAC25-260-140 D, and submitted to EPA for review and approval.

c. If the department determines that the data and information obtained from subdivisions 1 a (1) through (5) of this subsection demonstrate that there are periods of each year when no early life stages are expected to be present for any species of fish that occur at the site, the department shall issue a notice to the public and make available for public comment the supporting data and analysis along with the department's preliminary decision to authorize the site-specific modification to the ammonia criteria. Such information shall include, at a minimum:

(1) Sources of data and information.

(2) List of fish species that occur at the site as defined by subdivision 3 of this subsection.

(3) Definition of the site. Definition of a "site" can vary in geographic size from a stream segment to a watershed to an entire eco-region.

(4) Duration of early life stage for each species in subdivision 1 c (2) of this subsection.

(5) Dates when early life stages of fish are expected to be present for each species in subdivision 1 c (2) of this subsection.

(6) Based on subdivision 1 c (5) of this subsection, identify the dates (beginning date, ending date), if any, where no early life stages are expected to be present for any of the species identified in subdivision 1 c (2) of this subsection.

d. If, after reviewing the public comments received in subdivision 1 c of this subsection and supporting data and information, the department determines that there are times of the year where no early life stages are expected to be present for any fish species that occur at the site, then the applicable ambient water quality criteria for ammonia for those time periods shall be calculated using the table in this subsection, or the formula for calculating the chronic criterion concentration for ammonia when fish early life stages are absent.

e. The department shall maintain a comprehensive list of all sites where the department has determined that early life stages of fish are absent. For each site the list will identify the waterbodies affected and the corresponding times of the year that early life stages are absent. This list is available either upon request from the Office of Water Quality Programs at P.O. Box 1105, Richmond, Virginia 23218 or from the department website http://www.deq.virginia.gov/wqs.

2. The duration of the "early life stages" extends from the beginning of spawning through the end of the early life stages. The early life stages include the prehatch embryonic period, the post-hatch free embryo or yolk-sac fry, and the larval period, during which the organism feeds. Juvenile fish, which are anatomically similar to adults, are not considered an early life stage. The duration of early life stages can vary according to fish species. The department considers the sources of information in subdivisions 1 a (1) through (5) of this subsection to be the only acceptable sources of information for determining the duration of early life stages of fish under this procedure.

3. "Occur at the site" includes the species, genera, families, orders, classes, and phyla that: are usually present at the site; are present at the site only seasonally due to migration; are present intermittently because they periodically return to or extend their ranges into the site; were present at the site in the past or are present in nearby bodies of water, but are not currently present at the site due to degraded conditions, and are expected to return to the site when conditions improve. "Occur at the site" does not include taxa that were once present at the site but cannot exist at the site now due to permanent physical alteration of the habitat at the site.

4. Any modifications to ambient water quality criteria for ammonia in subdivision 1 of this subsection shall not likely jeopardize the continued existence of any federal or state listed, threatened or endangered species or result in the destruction or adverse modification of such species' critical habitat.

d. Chronic criteria: freshwater mussels absent and early life stages of fish absent.

The chronic criteria for total ammonia nitrogen (in mg N/L) where freshwater mussels are absent and early life stages of fish are absent (procedures for making this determination are in subdivisions 1 through 5 of this subsection in freshwater shall not exceed concentration values calculated using the equation below. Round the result to two significant digits.

0.9405 X (

0.0278

+

1.1994

) X(7.547 X 100.028 X (20 - MAX(T,7)))

1 + 107.688-pH

1 + 10pH-7.688

Where MAX = 7 or temperature in degrees Celsius, whichever is greater.

T = temperature in °C

D. E. The one-hour average concentration of total ammonia nitrogen (in mg N/L) in saltwater shall not exceed, more than once every three years on the average, the acute criteria below:

Acute Ammonia Saltwater Criteria
Total Ammonia Nitrogen (mg N/L)
Salinity = 10 g/kg

 

Temperature °C

pH

0

5

10

15

20

25

30

35

7.00

231.9

159.8

110.1

75.88

52.31

36.08

24.91

17.21

7.20

146.4

100.9

69.54

47.95

33.08

22.84

15.79

10.93

7.40

92.45

63.73

43.94

30.32

20.94

14.48

10.03

6.97

7.60

58.40

40.28

27.80

19.20

13.28

9.21

6.40

4.47

7.80

36.92

25.48

17.61

12.19

8.45

5.88

4.11

2.89

8.00

23.37

16.15

11.18

7.76

5.40

3.78

2.66

1.89

8.20

14.81

10.26

7.13

4.97

3.48

2.46

1.75

1.27

8.40

9.42

6.54

4.57

3.20

2.27

1.62

1.18

0.87

8.60

6.01

4.20

2.95

2.09

1.50

1.09

0.81

0.62

8.80

3.86

2.72

1.93

1.39

1.02

0.76

0.58

0.46

9.00

2.51

1.79

1.29

0.95

0.71

0.55

0.44

0.36

Salinity = 20 g/kg

 

Temperature °C

pH

0

5

10

15

20

25

30

35

7.00

247.6

170.5

117.5

80.98

55.83

38.51

26.58

18.36

7.20

156.3

107.7

74.21

51.17

35.30

24.37

16.84

11.66

7.40

98.67

68.01

46.90

32.35

22.34

15.44

10.70

7.43

7.60

62.33

42.98

29.66

20.48

14.17

9.82

6.82

4.76

7.80

39.40

27.19

18.78

13.00

9.01

6.26

4.37

3.07

8.00

24.93

17.23

11.92

8.27

5.76

4.02

2.83

2.01

8.20

15.80

10.94

7.59

5.29

3.70

2.61

1.86

1.34

8.40

10.04

6.97

4.86

3.41

2.41

1.72

1.24

0.91

8.60

6.41

4.47

3.14

2.22

1.59

1.15

0.85

0.65

8.80

4.11

2.89

2.05

1.47

1.07

0.80

0.61

0.48

9.00

2.67

1.90

1.36

1.00

0.75

0.57

0.46

0.37

Salinity = 30 g/kg

 

Temperature °C

pH

0

5

10

15

20

25

30

35

7.00

264.6

182.3

125.6

86.55

59.66

41.15

28.39

19.61

7.20

167.0

115.1

79.31

54.68

37.71

26.03

17.99

12.45

7.40

105.5

72.68

50.11

34.57

23.87

16.50

11.42

7.92

7.60

66.61

45.93

31.69

21.88

15.13

10.48

7.28

5.07

7.80

42.10

29.05

20.07

13.88

9.62

6.68

4.66

3.27

8.00

26.63

18.40

12.73

8.83

6.14

4.29

3.01

2.13

8.20

16.88

11.68

8.10

5.64

3.94

2.78

1.97

1.42

8.40

10.72

7.44

5.18

3.63

2.56

1.82

1.31

0.96

8.60

6.83

4.77

3.34

2.36

1.69

1.22

0.90

0.68

8.80

4.38

3.08

2.18

1.56

1.13

0.84

0.64

0.50

9.00

2.84

2.01

1.45

1.06

0.79

0.60

0.47

0.39

To calculate total ammonia nitrogen acute criteria values in saltwater at different pH and temperature values than those listed in this subsection, use the following formulas:

I =

19.9273S

(1000 - 1.005109S)

Where I = molal ionic strength of water

S = Salinity ppt (g/kg)

The regression model used to relate I to pKa (negative log of the ionization constant) is

pKa = 9.245 + .138I 0.138(I)

pKa as defined by these equations is at 298 degrees Kelvin (25°C). T °Kelvin = °C + 273

To correct for other temperatures:

pKaST = pKaS298 + .0324(298 - T °Kelvin) 0.0324(298 - T °Kelvin)

The unionized ammonia fraction (UIA) is given by:

UIA =

1

1 + 10(pKaST-pH)

The acute ammonia criterion in saltwater is given by:

Acute =

.233 0.233

UIA

Multiply the acute value by .822 0.822 to get the ammonia-N acute criterion.

E. F. The 30-day average concentration of total ammonia nitrogen (in mg N/L) in saltwater shall not exceed, more than once every three years on the average, the chronic criteria below:

Chronic Ammonia Saltwater Criteria
Total Ammonia Nitrogen (mg N/L)
Salinity = 10 g/kg

 

Temperature °C

pH

0

5

10

15

20

25

30

35

7.00

34.84

24.00

16.54

11.40

7.86

5.42

3.74

2.59

7.20

21.99

15.15

10.45

7.20

4.97

3.43

2.37

1.64

7.40

13.89

9.57

6.60

4.55

3.15

2.18

1.51

1.05

7.60

8.77

6.05

4.18

2.88

2.00

1.38

0.96

0.67

7.80

5.55

3.83

2.65

1.83

1.27

0.88

0.62

0.43

8.00

3.51

2.43

1.68

1.17

0.81

0.57

0.40

0.28

8.20

2.23

1.54

1.07

0.75

0.52

0.37

0.26

0.19

8.40

1.41

0.98

0.69

0.48

0.34

0.24

0.18

0.13

8.60

0.90

0.63

0.44

0.31

0.23

0.16

0.12

0.09

8.80

0.58

0.41

0.29

0.21

0.15

0.11

0.09

0.07

9.00

0.38

0.27

0.19

0.14

0.11

0.08

0.07

0.05

Salinity = 20 g/kg

 

 

Temperature °C

 

pH

0

5

10

15

20

25

30

35

 

7.00

37.19

25.62

17.65

12.16

8.39

5.78

3.99

2.76

 

7.20

23.47

16.17

11.15

7.69

5.30

3.66

2.53

1.75

 

7.40

14.82

10.22

7.04

4.86

3.36

2.32

1.61

1.12

 

7.60

9.36

6.46

4.46

3.08

2.13

1.47

1.02

0.71

 

7.80

5.92

4.08

2.82

1.95

1.35

0.94

0.66

0.46

 

8.00

3.74

2.59

1.79

1.24

0.86

0.60

0.43

0.30

 

8.20

2.37

1.64

1.14

0.79

0.56

0.39

0.28

0.20

 

8.40

1.51

1.05

0.73

0.51

0.36

0.26

0.19

0.14

 

8.60

0.96

0.67

0.47

0.33

0.24

0.17

0.13

0.10

 

8.80

0.62

0.43

0.31

0.22

0.16

0.12

0.09

0.07

 

9.00

0.40

0.28

0.20

0.15

0.11

0.09

0.07

0.06

 

Salinity = 30 g/kg

 

 

Temperature °C

 

pH

0

5

10

15

20

25

30

35

 

7.00

39.75

27.38

18.87

13.00

8.96

6.18

4.27

2.95

 

7.20

25.09

17.29

11.91

8.21

5.67

3.91

2.70

1.87

 

7.40

15.84

10.92

7.53

5.19

3.59

2.48

1.72

1.19

 

7.60

10.01

6.90

4.76

3.29

2.27

1.57

1.09

0.76

 

7.80

6.32

4.36

3.01

2.08

1.44

1.00

0.70

0.49

 

8.00

4.00

2.76

1.91

1.33

0.92

0.64

0.45

0.32

 

8.20

2.53

1.75

1.22

0.85

0.59

0.42

0.30

0.21

 

8.40

1.61

1.12

0.78

0.55

0.38

0.27

0.20

0.14

 

8.60

1.03

0.72

0.50

0.35

0.25

0.18

0.14

0.10

 

8.80

0.66

0.46

0.33

0.23

0.17

0.13

0.10

0.08

 

9.00

0.43

0.30

0.22

0.16

0.12

0.09

0.07

0.06

 

To calculate total ammonia nitrogen chronic criteria values in saltwater at different pH and temperature values than those listed in this subsection, use the following formulas:

I =

19.9273S

(1000 - 1.005109S)

Where I = molal ionic strength of water

S = Salinity ppt (g/kg)

The regression model used to relate I to pKa (negative log of the ionization constant) is

pKa = 9.245 + .138I 0.138(I)

pKa as defined by these equations is at 298 degrees Kelvin (25°C). T °Kelvin = °C + 273

To correct for other temperatures:

pKaST = pKaS298 + 0324(298 - T °Kelvin) 0.0324(298 - T °Kelvin)

The unionized ammonia fraction (UIA) is given by:

UIA =

1

1 + 10(pKaST-pH)

The chronic ammonia criterion in saltwater is given by:

Chronic =

.035 0.035

UIA

Multiply the chronic value by .822 0.822 to get the ammonia-N chronic criterion.

1The default design flow for calculating steady state wasteload allocations for the acute ammonia criterion for freshwater is the 1Q10 (see 9VAC25-260-140 B footnote 10) unless statistically valid methods are employed which demonstrate compliance with the duration and return frequency of the water quality criteria.

2The default design flow for calculating steady state wasteload allocations for the chronic ammonia criterion for freshwater is the 30Q10 (see 9VAC25-260-140 B footnote 10) unless statistically valid methods are employed which demonstrate compliance with the duration and return frequency of the water quality criteria.

 

G. Implementation of Ammonia Criteria through VPDES Permits.

The ammonia criteria in subsections A through C shall be addressed during individual VPDES permit reissuance for existing dischargers subject to new or more restrictive water quality-based ammonia effluent limits in accordance with the Department's standard permitting practices except as follows.

  1. Notwithstanding any other regulatory requirement, a compliance schedule may be established that exceeds the term of the permit, subject to a demonstration by the permittee that a longer period is necessary to allow a reasonable opportunity to attain compliance with the new or more restrictive ammonia discharge requirements. The Department's consideration for such a demonstration shall be made on a case-by-case basis, and shall require compliance as soon as possible, but not later than the applicable statutory deadline under the Clean Water Act.
  2. Information to be provided under subsection G.1 may include, but is not limited to, such factors as: (i) opportunities to minimize costs to the public or facility owners by phasing in the implementation of multiple projects; (ii) time needed for freshwater mussel habitat determinations; and (iii) other relevant factors.
  3. If a permit establishes a schedule of compliance which exceeds the term of the permit, the compliance schedule shall set forth interim requirements and the dates for their achievement.

a.    The time between interim dates shall not exceed one year.

b.    If the time necessary for completion of any interim requirement is more than one year and is not readily divisible into stages for completion, the permit shall specify interim dates for the submission of reports of progress toward completion of the interim requirements and indicate a projected completion date.

c.    The permit shall be written to require that no later than 14 days following each interim date and the final date of compliance, the permittee shall notify the Department in writing of its compliance or noncompliance with the interim or final requirements, or submit progress reports if subdivision 3.b is applicable.

d.    Any change to an interim compliance date in the schedule of compliance will be deemed to be a Minor Modification of the permit, provided the new date is not more than 120 days after the date specified in the existing permit and does not interfere with attainment of the final compliance date requirement.

 

9VAC25-260-170. Bacteria; other recreational waters.

A. The following bacteria criteria (colony forming units (CFU)/100 ml) shall apply to protect primary contact recreational uses in surface waters, except waters identified in subsection B of this section:

E. coli bacteria shall not exceed a monthly geometric mean of 126 CFU/100 ml in freshwater and no more than 10% of the samples in the assessment period shall exceed a Statistical Threshold Value (STV) of 410 CFU/100 ml..

Enterococci bacteria shall not exceed a monthly geometric mean of 35 CFU/100 ml in transition and saltwater and no more than 10% of the samples in the assessment period shall exceed a Statistical Threshold Value (STV) of 130 CFU/100 ml.

1. See 9VAC25-260-140 C for boundary delineations for freshwater, transition and saltwater.

2. Geometric means shall be calculated using all data collected during any calendar month with a minimum of four weekly samples. The Virginia Department of Health (VDH) shall make determinations regarding beach advisories or closures.

3. If there are insufficient data to calculate monthly geometric means in freshwater, no more than 10% of the total samples in the assessment period shall exceed 235 E. coli CFU/100 ml.

4. If there are insufficient data to calculate monthly geometric means in transition and saltwater, no more than 10% of the total samples in the assessment period shall exceed enterococci 104 CFU/100 ml.

5. For beach advisories or closures, a single sample maximum of 235 E. coli CFU/100 ml in freshwater and a single sample maximum of 104 enterococci CFU/100 ml in saltwater and transition zones shall apply .

B. The following bacteria criteria per 100 ml (CFU/100 ml) of water shall apply:

E. coli bacteria shall not exceed a monthly geometric mean of 630 CFU/100 ml in freshwater.

Enterococci bacteria shall not exceed a monthly geometric mean of 175 CFU/100 ml in transition and saltwater.

1. See 9VAC25-260-140 C for boundary delineations for freshwater, transition and saltwater.

2. Geometric means shall be calculated using all data collected during any calendar month with a minimum of four weekly samples.

3. If there is insufficient data to calculate monthly geometric means in freshwater, no more than 10% of the total samples in the assessment period shall exceed 1173 E. coli CFU/100 ml.

4. If there is insufficient data to calculate monthly geometric means in transition and saltwater, no more than 10% of the total samples in the assessment period shall exceed 519 enterococci CFU/100 ml.

5. Where the existing water quality for bacteria is below the geometric mean criteria in a water body designated for secondary contact in subdivision 6 of this subsection that higher water quality will be maintained in accordance with 9VAC25-260-30 A 2.

6. Surface waters designated under this subsection are as follows:

a. (Reserved)

b. (Reserved)

c. (Reserved)