BOARD FOR HEARING AID SPECIALISTS AND OPTICIANS

CURRICULUM REVIEW COMMITTEE

tentative AGENDA

May 22, 2024, 9:00 a.m., Board Room 3, Second Floor

Department of Professional and Occupational Regulation
Perimeter Center, 9960 Mayland Drive
Richmond, Virginia 23233
(804) 367-8590

Members: Kristina Green, Kaytlyn Young, Darla All, Erik Meland, and Stacey Brayboy
I. CALL TO ORDER
II. EMERGENCY EVACUATION PROCEDURES
III. APPROVAL OF AGENDA

1. Board for Hearing Aid Specialists and Opticians Curriculum Review Committee Agenda, May 22, 2024
IV. PUBLIC COMMENT
V. OPTICIAN CURRICULUAMCRITERIA REVIEW
VI. ADJOURN

Perimeter Center Conference Center

Emergency Evacuation of Board and Training Rooms

(Script to be read at the beginning of each meeting.)

PLEASE LISTEN TO THE FOLLOWING INSTRUCTIONS ABOUT EXITING THE PREMISES IN THE EVENT OF AN EMERGENCY.

In the event of a fire or other emergency requiring the evacuation of the building, alarms will sound.
When the alarms sound, leave the room immediately. Follow any instructions given by Security staff

Board Room 1

Exit the room using one of the doors at the back of the room. Upon exiting the room, turn RIGHT. Follow the corridor to the emergency exit at the end of the hall.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

Board Room 2

Exit the room using one of the doors at the back of the room. (Point) Upon exiting the room, turn RIGHT. Follow the corridor to the emergency exit at the end of the hall.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

You may also exit the room using the side door, turn Right out the doorand make an immediate Left. Follow the corridor to the emergency exit at the end of the hall.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

Board Rooms 3 and 4

Exit the room using one of the doors at the back of the room. Upon exiting the room, turn RIGHT. Follow the corridor to the emergency exit at the end of the hâhl.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

Training Room 1

Exit the room using one of the doors at the back of the room. Upon exiting the room, turn LEFT. Follow the corridor to the emergency exit at theend of the hall.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

Training Room 2

Exit the room using one of the doors at the back of the room. Upon exiting the doors, turn LEFT. Follow the corridor to the emergency exit at the end of the hall.

Upon exiting the building, proceed straight ahead through the parking lot to the fence at the end of the lot. Wait there for further instructions.

From: Williams Anna
Sent:Wednesday, April 10, 2024 2:04 PM
To: BCHOPLicensing (DPOR) BCHOPLicensing@dpor.virginia.gov
Subject: Re: Related Technical Instruction

Good afternoon,
I have attached our file that contains each class that we are seeking approval for. In the file you'll outlines, approval numbers, and affirmations of time please let me know if you need more information.

I am also including a snip of the ABO/NCLE Approval numbers and the links to our dasses

Links:
Establishing a Healthy Team Dynamic
ESTABLISHING A HEALTHY TEAM DYNAMIC - ABO - Leonardo (essilofluxottica.com)
Foundation of Ophthalmic Lens Power
FOUNDATION OF OPHTHALMIC LENS POWER - ABO - Leanardo (essilorluxottica.com)
Lens Standards and Formulas
LENS STANDARDS AND FORMULAS - ABO- Leonardo (essilorluxottica.com).
Lensometry

LENSOMETRY - ABO - Leonardo (essilor(uिxottica.com)
Maintaining a Healthy Team
MAINTAINING A HEALTHY TEAM-ABO - Leonardo (essilorluxottica.com)
Ocular Anatomy and Advanced Ocular Anatomy
OCULAR ANATOMY - ABO - Leonardo (essilorluxottica.com)
Optimizing Managed Vision Care
OPTIMIZING MANAGED VISION CARE - ABO - Leonardo (essilorluxottica.com)
\times
Pediatric Dispensing
PEDIATRIC DISPENSING-ABO - Leonardo (essilorluxottica.com)
Understanding Prismatic Effect
UNDERSTANDING PRISMATIC EFFECT - ABO - Leonardo (essilorluxottica.com)
Best Wishes and Warmest Regards,
Anna Williams
Manager - Training and Development

LEONARDO
science for a naw vition

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

Establishing a Healthy Team Dynamic

Paige Shouen

Sincerely,

Paige Shoven, M.Ed, ABOC

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:00 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Establishing a Healthy Team Dynamic
Hours:

Designation: Non-Ophthalmic

Course Number: SWEOA018

Expires: February 5, 2027

This course has been approved for $\mathbf{3}$ years.

Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:12 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,

This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Establishing A Healthy Team Dynamic
Hours:

Designation: Non-Ophthalmic
Course Number: CWEOA002

Expires: February 5, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Establishing a Healthy Team Dynamic

1 hour non-ophthalmic ABO credit
Abstract: The course covers three essential notions to establish a healthy team dynamic. First, how to set specific, measurable, attainable, and relevant goals. Second how to use different types of communication to build rapport. Finally, how to manage time effectively by communicating, organizing, and prioritizing.

Objectives:

1. To understand the importance of identifying and setting SMART goals.
2. To learn about effective time management techniques, managing your time effectively by communication g clearly, organizing and prioritizing your work, and controlling interruptions.
3. To learn about communication and identify the different communicationtypes.
4. To be able to differentiate effective verbal and non-verbal communication techniques.
5. Learn to build rapport with colleagues and patients.

Time Outline

I. Goal Setting and Action Plans (15 mins)

a. Setting SMART Goals

i. Performance Goals
ii. Development Goals
iii. SMART Goals

1. Specific
2. Measarable
3. Attainable
4. Relevant
5. Time-Bound
b. Preparingand Action Plan
is Create written SMART Goals
dii. Identify how to achieve your goals
iii. Create a timeline
iv. Determine resources needed
v. Execute the plan
c. What does it look like in real life?

Effective Time Management (20 mins)
a. Top 4 time management practices
i. Manage your communication

1. Listen Actively
2. Maintain eye contact
3. Paraphrase and check for understanding
4. Ask questions
5. Use Clarifying comments
ii. Organize and Prioritize
iii. Control Interruptions
iv. Stop Procrastination in its tracks
b. Tips to manage your time better
i. Prioritize your daily tasks
ii. Create a to-do list
iii. Ask for help
iv. Schedule time for interruptions
c. Leverage practice management systems
i. Practice Management System (PMS)
6. Schedule appointments
7. Track resources
8. Accounts Payable
9. Accounts Receivable (the other AR)
10. HIPPA information
11. Product Orders
ii. Benefits of a PMS
12. Marketing
13. Billing/Estimates
14. Scheduling
15. HIPPA
16. Insurance Benefits
17. Tracking performance
iii. Limitations of practicemanagement systems
III. Effective Communication skills (20 mins)
a. The importance of effective communication skills
i. Why is it important?
ii. Communication and the professional
b. Non Verbal and verbal communication
i. Verbal communication
ii. Non Verbal Communication
jif? Reflection on your own styles
c. Listening effectively
i. Tips to being a good listener
ii. Handling feedback effectively
IV. Avoiding Miscommunication
a. Understand why it happened and how to prevent miscommunication.
b. Negative and positive words

Test Questions

Topic	Effective Time Management		
Screen ID	Template		Multiple Choice with Single Correct Answer
Screen Content (Text may be limited.)			
Title	Question 10	a	
Prompt	Select the best answer then click Submit.		
Text	Which of the following is a category to which you can assign tasks while prioritizing a "To-Do" List?		

Topic	Effective Time Management			
Screen ID	Template			Multiple Choice with Single Correct Answer
Screen Content (Text may belimited.)				
Title	Question 12			
Prompt	Select the bestanswer then click Submit.			
Text	What is oneway you can manage interruptions effectively?			

Topic	Effective Time Management			
Screen ID				
Screen Content (Textmay be limited.)				
Title	Template	Multiple Choice with Single Correct Answer		

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:02 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Foundations for An Ophthalmic Lens
Hours:

Designation: Ophthalmic Level I
Course Number: STWEOA122-1

Expires: February 5, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

Foundations of Ophthalmic Lens Power

Sincerely,
Brooke K Carnasco

Brooke Carrasco, ABOC, NCLE

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

Foundations of Ophthalmic Lens Power
Paige Shoven
Sincerely,

Paige Shoven, M.Ed, ABOC

Date: 3/4/2022

To Whom It May Concern,

I, \qquad Walter "Pete" Hanlin \qquad do certify that I am the author of the following Continuing Education credit that is being submitted to the American Board of Opticianry for consideration of approval.

CEO2 - Foundation of Ophthalmic Lens Power

Best regards,

CEC: FOUNDATION OF OPHTHALMIC LENS POWER

FOUNDATION OF OPHTHALMIC LENS POWER covers the following three areas:

1) Focal Length of a Spectacle Lens: defines focal length and explains the relationship between focal length and dioptric power. This course also provides different examples of how to calculate focal length.
2) Vertex Distance and Vertex Compensation: explains the concept of vertex compensation and how to consider this factor when fitting a patient's eye wear. explains the concept of vertex compensation and how to consider this factor when fitting a patient's eye wear
3) Magnification and Spectacle Lenses: explains how unbalanced magnification in lenses can create vision problems. It also identifies key elements of magnification and how to use a knowledge of these elements to balance magnification in a lens.

Course outline/timing:
Focal Length of a Spectacle Lens (20 minutes)

1) Course Objectives
a) Define "focal length"
b) Explain the concept of focal length and 1 its relationship to dioptric power
c) Explain the difference between a regl and a virtual focal point
d) Determine dioptric power if given focal length
e) Determine the focal length ifgiven the dioptric power
2) Defining Focal Length
a) Plus Lenses - Parallel rays of light converge to a real image at the focal point of the lens
b) Minus Lenses - Virtual focal point is determined by tracing the diverging rays backwards
3) Focal Length and Dioptric, Bower
a) Plus Lens - Real focal point
b) Minus Lens - Virtual focal point
c) Focal Length formula
d) Chartreflecting overall lens power and focal length
4) Key Takeaways
a) ${ }_{c}$ The focal length of a lens is a measurement of how strongly it converges (focuses) or diverges (diffuses) light.
b) A plus lens will make parallel rays of light converge to a real image at the focal point of the lens. The focal length is also called the back vertex focal length.
c) For a minus lens, the virtual focal point is determined by tracing the diverging rays backwards. The distance from the lens to the virtual focal point is also called the front vertex focal length.
d) If you are given the power of a lens, you can compute the focal length. Similarly, if you are given the focal length of a lens, you can compute the lens power.
e) The lens power is equal to the reciprocal of the focal length measured in meters.

Vertex Distance and Vertex Compensation (15 minutes)

1) Course Objectives
a) Understand vertex distance
b) Explain vertex compensation
c) Define the essentials of vertex effect
d) Arrange the variables into the framework of the formula
e) Use the formula to compute the compensated lens power
2) Vertex Overview
a) Vertex Distance Definition
b) Describing a Cylinder lens
c) When is Vertex Compensation necessary?
3) Vertex Compensation Formula
a) Vertex Effect chart
b) Vertex Compensation formula examples
4) Key Takeaways
a) The vertex distance is the distance between the back surface of a corrective lens and the front of the cornea.
b) All lenses have two dioptric power values. One is the actual power which may be measured in a lensometer, and the other is the effect power that only the wearer perceives.
c) Vertex compensation enables the optician who notes differences between the examined and fitting vertices to adjust the lens pojer in the worn lenses to match the value of the examined power.
d) Whenever any lens is moved farther or closer in the fit than where it was examined, the perceived power of the lens changes. In lenses with powers less than 6.50 diopters, this change is usually not significant, but in lenses above 6.50 diopters, wearers will usually notice a differénce.
e) To calculate the necessary compensation in power, you must:
f) first calculate the amount of compensation necessary per millimeter of displacement. It is equal to (Lens power)2 / 1000
g) then multiply that number by the exact number of millimeters of displacement between
γ the examination vertex and the fitting vertex

Magnification and Spectacle Lenses (30 minutes)

1) Course Objectives
a) Explain what magnification is and its effect on vision
b) Understand the causes of magnification
c) Learn the magnification formula to calculate the amount of magnification in a lens
d) Manage the variables of lens design to balance magnification between lenses
2) What is Magnification?
a) Magnification
b) Minification
c) Condition called aniseikonia,
3) The Magnification Formula
a) Magnification Formula
b) Shape Factor/Index of Refraction
c) Power Factor
d) Design Variable chart
e) Contact Lenses are worn with no Vertex Distañce
4) Managing Variables to Impact Magnification
a) Base Example - High Plus Lens with Standard Variables
b) Examples: Lowering the Base Cyye leads to lower magnification
c) Examples: Decreasing the center thickness leads to further decrease
d) Examples: Decreasing thevertex distance lowers magnification further.
e) Examples: Increasing the Refractive Index decreases magnification.
5) Key Takeaways:
a) The elements of lens design which influence magnification are: base curve, thickness, vertex, andindex of refraction
b) There are several methods for adjusting these three elements in order to create binocular harmony
c) The magnification formula can be used to determine the total amount of magnification difference between the eyes
d) The magnification formula can be used as a predictor of how design changes will solve the problem of magnification imbalance

UNDERSTANDING PRISMATIC EFFECT

UNDERSTANDING PRISMATIC EFFECT covers the following three areas:

1. Understanding Prism in a Prescription: provides detailed information on how to read prism in a prescription and identify different types of prism. It alsa provides information on how to use a lensometer to identify the amount and basedirection of the prism in a lens.
2. Understanding Lens Power and Prismatic)Effect: describes how to identify lens power in different types of lenses. It also provides a detailed description of how to use Prentice Rule in measuring the power of a lens.
3. Balancing Prescribed Prism: explains the difference between prescribed prism and induced prism and the purpose of balancing prism. It also provides the rules for canceling, compounding, and balancing prism.

Let's get right into it with our first lesson on Understanding Prism in a Prescription. At the end of this course, you will be able to:

1. Describe the two types of prism (prescribed and induced) that can exist in a prescription
2. Explain the base direction of any existing prescription
3. Use the lensometer to identify the amount and base direction of prism in a lens Identify common problems unwanted and induced prism can cause for the patient
4. Follow industry protocol for reordering lenses exceeding prism tolerances

UNDERSTANDING PRISM IN A PRESCRIPTION

Welcome to the lesson on understanding prescribed and induced prisms. At the end of this course, you will be able to:

- Describe the two types of prism (prescribed and induced) that can exist in a prescription
- Explain the base direction of any existifg prescription
- Use the lensometer to identify the amount base direction of prism in a lens
- Identify common problems unwantedsand induced prism can cause for the patient
- Follow industry protocol for reogdering lenses exceeding prism tolerances

VISUALIZING PRISM IN A LENS

PRISMS ARE THE BUILDING BLOCK OF LENSES

IN A SIMPLIS才才AC VIEW，DEPENDING UPON HOW THE PRISMS ARE ARRAN゙GED，A PLUS OR MINUS LENS WILL RESULT

Plus lenses are a combination of prisms base to base.

Minus lenses are a combination of prisms apex to apex.

THE OPTICAL CENTER OF A LENS IS THE GENTRAL POINT THROUGH WHICH LIGHT MAY PASS WI太H้OUT BEING DEVIATED

The optical center occurs at the point where both prisms meet in a lens. In a plus lens, the optical center is the point where the prisms meet base to base. In a minus lens, the optical center is the point where the prisms meet apex to apex. Since light always bends towards the base, plus lenses converge light while minus lenses diverge light.

[^0]
BASE IN PRISM

When the centers of a minus lens are wider than a patient's pupillary distance, the patient will look through the inner half of the lens, which is a prism with the base in towards the nose.

BASE OUT PRISM

When the centers of a minus lens are narrower than a patient's pupillary distance, the patient will look through the outer half of the lens, which is a prism with the base out towards the ear.

When the centergy of a plus lens are narrower than- patient's pupillary distance, the patient will look throughthe outer half of the lens, which is a prism with đhe base in towards the nose.

When the centers of a plus lens are wider than a patient's pupillary distance, the patient will look through the inner half of the lens, which is a prism with the base out towards the ear.

BASE DOWN PRISM

Looking through the lower half of a minus lens puts the line of sight through the half of the lens that isa prism with its base down from the line of sight.

Looking through the upper half of a plus lens puts the line of sight through the half of the lens thatisá prism with its base down from the line of sight.

BASE UP PRISM

Looking through the upper half of a minus lens puts the line of sight through the half of the lens that is a prism with its base up from the line of sight.

Looking through thelower half of a plus lens puts the line of sight through the half of the lens that isa prism with its base up from the line of sight.

CHECKING PRISM WITH A LENSOMETER

READINGPRESCRIBED PRISM

Place each lens into the lensometer one at a time. Be careful to situate the center of the target over the reticle at the point that represents the amount and direction of the prescribed prism.

Spot each lens at the center of the reticle.

Measure the distance between the dots. If this distance between the dots equals the

MEASURING INDUCED PRISM

1
Disregard the optical centers of the surfaced lens

2
With a marking pen, dot where the centers should have been surfaced to line upover the pupils. You can have the patient wear their eyewear and place a dot in front of each pupil

Place your new marking pen dot directly on the center over the lensstop

View the displaced target and let the reticle indicate the anount and direction of the prismatic effect

NO PRISM AT THE OPTICAL CENTER

The reticle is the bullseye targetion the background. Each circle is designated with a number that corresponds to a dioptric value of prism. A lens that is centered with no prism will show up with the mires (the crisscrossed lines) exactly on center.

READING PRISM ON A LENSOMETER

A lens that is spotted with the patientrs pupillary distance and reads as the diagram to the left, indicates that the lens will generate a 1 diopter prism down.

In some cases a doctor will write a prism prescription calling for the use of different prism values in different directions, fo verify the presence of the prescribed prism, the lens should be spotted at the patient's pupillary distance. The target should be displaced at that point. Read the position of the target by locating the center of the target as the intersection of the two directional tangent values.

Compound prism (i, e, different prism values in different directions) is read at the intersection of two tangent lines. The diagram shows 2 diopters of prism base up and 2 diopters of prism base out.

WHAT PATIENTS MAY EXPERIENCE DUE TO UNWANTED PRISM

Direction of unwanted prism	Visual effect	Patient experience
Excessive base down prism	Floor (Horizontal) seems concave	Standing in the bottom of a bowl
Excessive base down prism	The horizon is displaced upward	ing uphilh
Excessive base up prism	Floor (Horizontal) seems convex	Standinơo on top ofa hill
Excessive base up prism	The horizon is displaced downwardo	Walking downhill
Excessive base inor out prism	toward base or/low	The floor seems tilted

INDUSTRY PRROTOCOL FOR REORDERING LENSES EXCEEDING PRISM TOLERANCES

Upon inspection, lenses not meeting industry standards should be returned to the lab from which the Penses came. When reordering lenses, it is important to inform the lab that the lenses exceeded industry tolerance for prismatic effect. According to ANSI 2005 standards, induced prism beyond 0.66 diopters per pair horizontally or 0.33 diopters per pair vertically are not acceptable.

The amount of excessive prism should be noted and identified for each eye. This will eliminate guesswork and help the lab to identify the nature of the error. With specific data the lab will be able to process the new lenses quickly and efficiently.

In a progressive lens, prism should not be measured at the distance verification circle. Prism should be measured at the primary reference point (PRP), which is the dot below the fitting cross and the optical center of a progressive lens. For all EssilorLuxgttica designs, this dot is 4 mm below the fitting cross in the míddle of the microengravings

KEY TAKEAWAYS

Congratulations! You have completed the "Understanding prism in a prescription" lesson. In this course you learned:

1
To describe the two types of prism (Prescribed and Induced) thatican exist in a prescription

2
How to explain the base direction gfany existing prescription

How to explain the base direction of any existing prescription

4

> To identify common problems, unwanted and induced prism can cause for the patient

UNDERSTANDING LENS POWER AND PRISMATIC EFFECT

Welcome to the lesson on understanding lens power and prismatic effect.
At the end of this course, you will be able to:

- Visualize all lenses as a combination of prisms
- Describe lens power in both spherical and cylindrical lenses
- Transpose any cylinder prescription into either plusoor minus cylinder form
- Find the power of any lens in the two major meridians of 90 degrees and 180 degrees
- Use the Prentice rule formula to computesprismaticeffect

SPHERICAL AND CYLINDRICAL LENSES

THE TOTAL POWER OF A LENS IS THE EQUAL TO THE COMBINATION OF THE FRONT CURVE AND BACK CURVE POWERS

LENS POWERS IN SPHERES:
A spherical lens is formed when a front curve of singular dioptric power is combined with a back curve of singular.

Convex front surface

Front curvatures are usually convex and are referred to as plus powers.

Concave back surface
Back curvatures are usually concave and are referred to as minus powers.

[^1] power of the back curve. The resulting value is the lens power.

DESCRIBING A CYLINDER LENS

- Cylinder lenses are appropriately named since their design resembles that of a cylindrical tube.
- Unlike a sphere, which has only one power, a cylindrical lens has two separate meridians of power
- The meridian with the strongest power is called the "major" meridian, and the meridianowith the weakest power is called the "minor" meridian. These two meridians are 90 degrees @part
- The meridians falling between the major and the minor meridians will haveyowers which fall between the strongest and weakest powers
- By definition, the cylindrical power of the lens is the differencebetween the major and minor meridians

1. Cylinder axis

The axis indicates the angle between the two meridians of astigmatism. The axis is expressed in degrees.

2. Maximum edge thickness

A cylinder lenss will be the thickest at major meridian. This area occurs at a 90 degrees angle from the cylinder axis

3. Minimum edge thickness

कhe cylinder lens will be the thinnest at the cylinder axis.

EVERY CYLINDER LENS CAN BE DESIGNATED IN TWO WAYS

It is important to note that the same lens can be designated in two ways without changing the actual power of the cvlinder lens. The two forms of a cvlinder lens are known as "plus cvlinder form" and "minus cvlinder form".

The process of switching from one form to another is called transposition. The rules of transposition are as follows:

1 add cylinder to sphere

2 change siqn of cylinder

3 shift axis by 90 degrees by adding 90 to an axis of 90° or less, or subtracting 90 from an axis of 91° or areater

Using these three steps, we will transpose the following prescription fromelus to minus cylinder form:

1 Add cylinder to sphere $+3.00+1.00=+4.00$, when the prescription is written in minus cylinder form, +4.00 will bethe first number

2 Change sigrof cylinder: +1.00 was the cylinder power in plus cylinder form. Therefore, we change it to -1.00, which is the second number in the minus cylinder form

3 Shift axis by 90 degrees: 90° was the axis in the plus cylinder form. Following the rules, we add 90° Sto it, resulting in 180°, which is the last number in the minus cylinder form

Once transposed, the prescription is written as:

Sphere	Cylinder	Axis
+4.00	-1.00	180

Both of the designations, while looking different, actually represent the same lens powe

PRISMATIC EFFECT CALCULATIONS

AS EYECARE PROFESSIONALS, IT IS GRITIGAESTHAT YOU ARE ABLE TO LOCATE THE TOTAL LENS POWER' OF ANY LENS AT THE TWO KEY AXES OF 180° ANE 90°

THE POWERS IN THESE TWO MERIDIANS ARE ESSENTIAL TO PRISMATIC EFEECT CALCULATIONS
 With the prismatic effect ©alculations, you can determine the quality and efficiency of any lens.

- Axis 180°. When the placement of the optical centers varies from the patient's pupillary distance, prism is introduced. The distance the centers are off, and the lens power at axis 180°, are critical variables in the Prentice rule formula which is used to determine whether the lenses meet industry tolerances or not.

Axis 90° : when lens power varies from eye to eye, it is necessary to note the variation in the 90 degree meridian. Power discrepancies in the 90 degree meridian will lead to prismatic imbalances at the reading level. The lens power at axis 90° along with the reading depth are critical variables in thePrentice rule formula which wi Il be used to correct prismatic imbalances at near points

RESOLVING POWER WITH AXES OF 180° OR 90° : ALL OR NOTHING

o Axis 180° : if the axis is written as 180° then no cylinder exists at 180°. The power of that lens at 180° is the sphere power only, while at 90° the power is all of the sphere and all of the cylinder addedtogether.
o Axis 90° : if the axis is written as 90°, then no cylinder exists at 90°. The power of that lens ata 90° isthe sphere power only, while at 180° the power is all of the sphere and all of the cylinder added together.

RESOLVING POWER WITH AXES OF 45° OR 135° : HALF AND dAALF

These are easy to resolve if you remember the definition of a cylinder. A cylinder has zero power along its axis, and 100% of its power 90 degrees away from its axis, and 50% of its power 45 degrees away from its axis.

Therefore, to calculate the power of a cylindrical lens wither axis at 45° or 135° in the vertical $\left(90^{\circ}\right)$ or horizontal $\left(180^{\circ}\right)$ meridians, simply add one half of the cylinder power to the sphere power (since 90° and 180° are both 45° degrees away from the axis of a lens having a cylinder axis of 45° or 135°).

For example, the Rx OD: -1.00-3.00 x 045 will have 2.50 diopteps of power in both the 90° and 180° meridians (because both of these meridians are 45 degreesfaway from the cylinder axis, simply add $1 / 2$ the cylinder power to the sphere power to determine the power in those meridians).

RESOLVING POWERُ WITH OBLIQUE AXES: USE THE TABLE

When cylinder axes fall on other than $45^{\circ} / 90^{\circ} / 135^{\circ} / 180^{\circ}$ the exact percentage of cylinder can be calculated using trigonometry, or byusing the table below-as most of the industry does.

Find the closest value in either column A or B that best matches the distance from your axis of concern (180° or 90°)Use the percentage in that line to compute the amount of cylinder that will be present at your axis of concern a \hat{a} d add that to the sphere power for the total power.

Degrees from axis

Cylinder

80° or 100°	97%		
85° or 95°	99%	100%	0

Example : +2.00-1.00 X 35

- Solving a vertical imbalance problem, you are concerned with the power at 90°. starts with 55°, the lens would have 67% of the -1.00 cylinderat 90°.
- To calculate 67% of the lens power of -1 - 00 , multiplydthe two numbers together: $(67 \%) \times(-1.00)=$ -0.67 diopters, which is the Cylinder lens powereat axis 90°.
- Remember that sphere power is the same everywhen on the lens. To find the total lens power at 90°, we need to add the Sphere powier to the cylinder power, both at axis 90°.
- \quad Sphere Power + Cylinder at $90^{\circ}=$ Total power of the lens. In this case, $(+2.00)+(-0.67)=(+1.37$ diopters) $=$ Total power of the lens

THE PREAU゚ICE RULE FORMULA TRANSLATES VARIABLES INTO REAL OBJEGTIVE VALUES OF PRISMATIC EFFECT

Using this formula, you will be able to translate variables such as lens power and distance in millimeters *íto realobjective values of prismatic effect that can easily be judged with industry tolerances and evaluated to improve lens design.

$$
\text { Prismatic effect }=\text { (Distance in millimeters } X \text { Lens Power) } / 10
$$

The units of prismatic effect ar measured in diopters of prism.

Example:

$O D+2.00-2.00 \times 045$
OS +1.00-0.50 X 090

The patient's pupillary distance is 64 mm (mono-PD of 32 mm in each eye)

The centers from the lab were ground at 68 mm (2.0 mm too wide in each eye)

Prismatic effect and direction in each lens:

- OD (right): in order to use Prentice's formula, you need the lens power. Based on what you learnedearlier, you should be able to calculate the power at 180°, which is +1.00 .
- OS (left): likewise, you should be able to calculatethe power at 180°, which is +0.50 .
-

OD: $(2.0 \mathrm{~mm} \mathrm{x}+1.00) / 10=)^{2 / 10}=0.20$ diopters of prism base out

- OS: $(2.0 \mathrm{~mm}) x+0.50) / 10=1 / 10=8.10$ diopters of prism base out

Total prismatic effect: Out and Out compound, so this job generates 0.30 diopters of prism which is within industry tolerance. Industry standards are covered in a separate lesson in this course.

LATERAL PRASMATIC EFFECTS DUE TO CENTRATION ERRORS 2^{9}

Aligning the optical centers of the lenses with the patients' pupils will ensure there is no prismatic effect. However, misalignment will lead to lateral prismatic effects with base directions depending upon the power of the lens. Click on the markers below to learn more:

KEY TAKEAWAYS

In this lesson, you learned:

A spherical lens is formed when a front curve of singular dioptric power is combined with a back curve of singular dioptric value. The lens which results from that combinationfs spherical since it has only one overall dioptric power

2
In order to derive lens power, you must usea lens clock to read the power of the front curve and add it to the power of the back curve. The resulting value is the lens power

Unlike a sphere, which has only oneqower, a cylindrical lens has two separate meridians of power. The meridian with the strongest power is called the "major" meridian, and the meridian with the weakest power is called the "minor" meridian

4
The same lenscan be designated in two ways without changing the actual power of the cylinder lens. The two forms of a cylinder lens are known as "plus cylinder form" and "minus cylinder form"

The process of switching from one form of cylinder to another is called transposition. The rules of transposition are as follows:

- add cylinder to sphere change sign of cylinder
- shift axis by 90 degrees by adding 90 to an axis of 90° or less, or subtracting 90 from an axis of 91° or
- greater

6 By calculating prismatic effect, you can determine the quality and efficiency of any lens. In order to do so, you need to calculate the amount of cylinder at a given angle of the lens. At 180° or 90°, it is all power or no power. At axes 45° and 135°, it is split half and half. Any angle in between, a table is used to get the amount of cylinder power

The Prentice rule helps you calculate the amount of prismatic effect at a given point. The anount of prismatic effect is equal to (Distance in millimeters X Lens Power) / 10

When the optical centers of the lenses are centered with the center of the patient's pupils there is no induced prismatic effect. Any misalignment will lead to induce prism, The direction of the base of the induced prism will depend on the type of lens (minus or plus power) and the direction of the misalignment

BALANCING PRESCRIBED PRISM

Welcome to the lesson on balancing prescribed prism. At the end of this lesson you will be able to explain:

- The difference between prescribed prism and induced prifism
- The purpose of balancing prescribed prise
- The rules of prism cancelling and compounding
- The rules of balancing prescribed prism
- How to balance prescribed prism inan actuar prescription

PRESCRIBED VS INDUCED PRISM

Normal binocular vision give patients clear single vision, through perfect alignment of the eyes. What patients see is slightly differene from one eye to the other, as objects are seen at different angles. With proper alignment, the brain combines creates one clear image. This is known as binocular vision and it is what gives us a sense of distance and three-dimensionality.

There are many cases though where the eyes are not in alignment with each other and the two eyes see not-so-slightly different images. The brain has trouble combining the two views, resulting in double vision.

Strabismus is the term to describe when one's eyes are misaligned. Strabismus is a failure of the two eyesto maintain proper alignment. The degree of misalignment can vary, ranging from small to large angle deviations. Strabismus can be constant or intermittent. The misalignment might always affect the same eye (unilateral strabismus), or the two eyes may take turns being misaligned (alternating strabismus).

The different types of strabismus are as followed:

- Exotropia: eyes are deviated outwards
- Esotropia: eyes are turning inwards
- Hypertropia: eyes are deviated upwards
- Hypotropia: eyes are deviated downwards

Prisms are prescribed by the doctor in prismatic diopters. The doctor will also provide the base of the prescribed prism:

- Base IN to correct exotropia (eyes are deviated outwards)
- Base OUT to correct esotropia (eyes are deviated inwards)
- Base DOWN to correct hypertropia (eyes are deviated upwards)
- Base UP to correct hypotropia (eyes are deviated downwards)

Some prisms are just up, down, in or out. Others are oblique, which requires that a horizontal and vertical base direction be specified.

INDUCED PRISLG 5° S USUALLY CAUSED BY A FABRICATIQOOR FITTING ERROR

When centers are ground too wide or too narrow, or fitted too high or low, a person with normally good alignment is forced to look through the unwanted prism that has been induced by the grinding or alignment error. Where no prism is required, its presence can cause blurred or double vision.

According to the ANSI Z80.1 standards, induced prism above 0.66 diopters horizontally or 0.33 diopters vertically is unacceptable.

In this lesson we will only deal with balancing prescribed prism. We will learn how to make this good form of prism even better.

THE RULES FOR BALANCING PRISM

Often when doctors preseribe prism they write it as a total and leave it all in one eye.

Example: Oby 1.00 with 10Δ down

White this will work in theory, the real lenses will be out of balance in both thickness and weight. The

The diagram to the left shows two example aross sections of minus lenses, depicted as a pair of prisms apex-to-apex. The "out of balancelvens (left) (s) thinner on the top than on the bottom of the cross-section. For this reason, we coutdo say the prism is "out of balance" or "unbalanced".

What these rules do is allowyou to break one large amount of prism into two smaller amounts of prism while maintaining the same effect for the wearer.

1 चhe desired effect of prescribed prism can be loaded all into one eye or balanced between both eyes. The effect to the wearer is the same. must always keep the direction the same in the prescribed eye. If the prescribed prism is up or down, the split should be distributed with up in one eye and down in the other (compounding effect). Whenever prescribed prism is split, you must keep the prescribed direction the same in the prescribed eye.

OD: - 1.00 sph 10Δ down
OD:-1.00 sph 5Δ down

```
OS: -1.00 sph
```

OS: -1.00 sph 5Δ up

3 If the prescription power is already balanced from eye to eye, a $50 / 50$ ssplit of the prescribed prism is the appropriate choice. As an example:

Original Rx

Same Rx vith split prism

OD: -1.00 sph 5Δ down
OD: 1.00 sph 2.5Δ down

OS: -1.00 sph

OS:O1.00 sph 2.5Δ up

 If one lens has less power, and therefore less thickness and weight, you might consider putting the majorfty (60% to 70%) of the split prism in the weaker lens, which will make the lens thigker and thereby achieve better balance in thickness between the two lenses.
Origina! $\mathrm{g}_{\mathrm{i} x}$

Same Rx with split prism

OD:- -6.00 sph 5Δ down
OD:-6.00 sph 1Δ down

OS: -1.00 sph
OS: -1.00 sph 4Δ up

When splitting up prism, you want to ensure that the prismatic effects of each eye are additive to reach the prescribed amount of prism (compounding effect). You can do this with the following compounding situations:

Splitting prism should de done with the doctor's permission. Always check with the doctor before splitting prism.

KEY TAKEAWAYS

In the lesson on "Balancing prescribed prism", you learned that:

1
Prism can be prescribed by the doctor to address misalignment of the patients vision.

2 Prism can also be induced due to fabrication or fitting error.

3 The desired effect of prescribed prisin can be lgaded all into one eye (i.e., in one lens) or preferably balanced between both eyes.

4

5
The reason we split the prism (between) (enses) is to create better cosmetics by balancing thickness and better wearing comfort by balancing weight.

If the prescribed prism is up or down, the split should be distributed with up in one eye and down in the other.

In the case of prescribed prism in or out, the base direction should be the same in both eyes and in the same direction as the prescribed prism.

You have completed the lesson!

© 2022 EssilorLuxottica. All images and text in this tool are protected by copyright laws and are for internal use only. They may not be used or reproduced in any form or manner without the prior written permission of EssilorLuxottica, or in the case of third party materials, the owner of that content.

FOCAL LIENGTH OF A SPECTACLE LENS

Welcome to the lesson on focal length of a spectacle lens.
At the end of this lesson, you will be able to:

- Define "focal length"
- Explain the concept of focal length and itspelationship to dioptric power
- Explain the difference between a realand a virtual focal point
- Determine dioptric power if given focalfength
- Determine the focal length if giventhe dioptric power

DEFINING FOCAL LENGTH

FOCAL LENGFH AND DIOPTRIC POWER

$$
8
$$

KNOWLEDGE CHECK

DEFINING FOCAL LENGTH

A PLUS LENS WILL MAKE PARALLEL RAYS OF LIGHT CONVERGE TO A REAL IMAGE AT THE FOCAL POINT OF

THE LENS

The light rays coming iffrom the left strike the lens and are directed toward the focal point on theสfight. The solid horizontal and angled arrows are the paths of real light rays. Thesolid vertical line indicates the focal plane where the focal point is, and a realimage is located. For a plus lens, the focal length is also called the "back vertex focal length."

FOR A MINUS LENS, THE VIRTUAL FOCAL POINT IS DETERMINED BY TRACING THE DIVERGING RAYS BACKWARDS

The light rays coming in from the left strike the lens and are directed outward, never converging on a focal point. Focal length is determined by tracing the diverging
rays backwards (dotted lines) until they meet at the focal point. The distance from the lens to the virtual focal point is also called the "front vertex focal length."

FOCAL LENGTH AND DIOPTRIC POWER

$$
\begin{aligned}
& \text { WHEN DEFINING THF } \\
& \text { STANDARDS, IT MAS }{ }^{\circ} \\
& \text { DETERMINED CRHA THE FOCAL } \\
& \text { LENGTH OF A GNNE DIOPTER LENS } \\
& \text { IS ONE ME.SG? }
\end{aligned}
$$

Plus lens: real focal point

Plus lenses have a "real" focal point because they bring parallel rays of light to a point of focus.

For a one diopter plus lens, the real focal point in one meter away.

Minus lens: virtual focal point

Minus lenses have a "virtual" focal point beeause in order to find the focal point you must virtually trace the real rays backwards to find them.
For a one diopter minus lens, the virtual focal point in onemeter away.

THE LENS PQWER IS EQUAL TO THE RECIPROCAL OF THE FOCAL LENGTH MEASURED IN METERS.

If given the lens power, you can determine the focal length by applying the following formula:

Focal length (in meters) $=1 /$ Lens power (in diopter)

Similarly, you can determine the lens power from the focal length with the following formula:

Lens power (in diopter) = 1 / Focal length (in meters)

As the power of a lens increases, the focal length decreases. In a similar way, when the focal length of a lens increases, the power of a lens decreases.

KNOWLEDGE CHECK

Welcome to the knowledge check on "Focal length of a spectacle lens".
Let's quickly check if you remember what we discussed in this lesson.
This assessment contains 6 questions.

Question
01/06

Plus lenses have a...
\bigcirc virtual focal point
\bigcirc real focal point

Question
02/06

The focal length of a lens is a measurement of how strongly it converges or diverges light.
True

False

Question
03/06

Focal length and power of the lens are:

Inversely proportionalDirectly proportionalIndependent of each other

Question
04/06

What is back vertex focal length?

The back vertex focal length is the distance between a plus lens and the focal point of the lens

The back vertex focal length is the distance between the iorage and the object

The back vertex focal length is the differencebetween the focal length and the lens power

The back vertex focal length isgthe distance between a minus lens and the focal point of the lens

Question
05/06

What is the formula for focal length?

Focal Length $=1 /($ Back Vertex $)$

Focal Length $=1 /$ (Lens Power)

Question
06/06

What is the focal length of a 20 diopter lens?

20 meters

2 meters

1/12th of a meter

1/20th of a meter

KEY TAKEAWAYS

IN THE LESSON ON FOCAL LENGTH OF A SPECTACLE LENS, YOU LEARNED:

1
The focal length of a lens is a measurement of how strongly it converges (focuses) or diverges (diffuses) light A plus lens will make parallelrays of light converge to a real image at the focal point of the lens. The focal length is also called the back vertex focal length

For a minus lens, the virtual focal point is determined by tracing the divergingrays backwards. The distance from the lens to the virtual focal point is also called the front vertex focal length

If you are given the power of a lens, you can compute the focal length. Similarly, if you are given the focal length of a lens, you can compute the lens power

5 The lens power is equal to the reciprocal of the focal length measured in meters

You have completed the lesson!

© 2022 EssilorLuxottica. All images and text in this tool are protected by copyright laws and are for internal use only. They may not be used or reproduced in any form or manner without the prior written permission of EssilorLuxottica, or in the case of third party materials, the owner of that content.

MAGNIFICATION AND SPECTACLELENSES

Welcome to the lesson on magnification and spectacle lenses.
At the end of this lesson, you will be able to:

- Explain what magnification is and its effect on vision
- Understand the causes of magnification
- Learn the magnification formula to calculate the amount of magnification in a lens
- Manage the variables of lens design to balance magnification between lenses

WHAT IS MAGNIFICATION?

THE TERM "MAGNIFICATION" IS USED TO DESCRIBE BOTH MAGNIFICATION AND

 MINIFICATIONSpectacle lenses are prescribed to correct refractive errors within the eye and provide focused vision. However, one "side effect" of refractive lenses is the tendenicy of lenses to magnify or minify objects.

All spectacle lenses cause some degree of magnification. The visual system is usually not bothered by magnification, provided it is relatively equal between both lenses.

Magnification occurs when a spectacle lens enlarges the image of an object being viewed. Magnification is directly proportional to the amount of plus power in a lens (that is, the greater the plus power, the higher the level of magnification produced by the lens).

MAGNIFICATION
MINIFICATION

Minification occurs when a spectacle lens reduces the image size of a viewed object. Minification is directly proportional to the amount of minus power in a lens (that is, the greater the minus power, the higher the level of minification produced by the lens).

However, when lenses produce significantly different amounts of magnification, the brain is not able to mgintain binocular vision (i.e. combine the images of both eyes to create a singleginage).

This condition is called aniseikonia, and can usually occur when the difference in magnification is greater than 4\% (which occurs when the difference in power between the right and left lenses is $\mathbf{>} \mathbf{2 . 5 0}$ diopters).

CONTINUE

THE MAGNIFICATION FORMULA

THE FORIMULA USED TO CALCULATE MAGNIFICATION IN A LENS IS MADE OF LENS SHAPE AND POWER INFORMATION

MAGNIFICATION = SHAPE FACTOR x POWER FACTOR

POWER FACTOR

The shape factor contains information about the shape/appearance of the lens:

- thickness (in meters)
- base curve
- index of refraction

$$
\text { SHAPE FACTOR = } 1 \text { / [} 1 \text { - (thickness/index) x base curve] }
$$

SHAPE FACTOR

```
POWER FACTOR
```

The power factor contains information about the refractive power of thedens and its position in front of the eye.

$$
\text { POWER FACTOR = } 1 \text { / [1- (vertex power)] }
$$

The formula used to calculate magnification in a lens is as follows:

MAGNIFICATION =

1/[1 - (thickness/index) x base curve] x 1/[1 - (vertex x power)]

Althourgh it is not important or practical to memorize the spectacle magnification fofmula, it is important to understand how each element of lens design affects magnification (which becomes apparent when considering the formula).

Thickness	Increased thickness = Stronger magnification	Increases shape factor
Index	Higher index = Lower magnification	Decreases shape factof
Base curve	Increased base curve = Stronger magnification	shape factor
Vertex	Increased vertex distance $=$ Stronger	power factor
Lens power	Increased pluspoow Stronger magnific	Increases power factor

CONTACT LENSES ARE WORN WITH NO VERTEX DISTANCE

Most patients are refracted at a 10 to 14 mm distance. Taking into account these different distances, all contact lens prescription over + or 4.00 diopters need to be compensated for vertex distance.

- When switching from contact lenses to spectacle lenses, patients will experience changes in magnification. Myopes may experience
minification when wearing spectacle lenses, in comparison to contacts.
On the contrary, hyperopes may experience magnification with lenses at a higher vertex distance.

MANAGING VARIABLES TO IMPACT MAGNIFICATION

BASEEXAMPLE: HIGH PLUS LENS WITH STANDARD VARIABLES

Design variable	Value
Thickness	$5 \mathrm{~mm}(0.005 \mathrm{~m})$

Design variable	Value
Index	1.50
Base curve	8.00
Vertex	$13 \mathrm{~mm}(+3 \mathrm{~mm})=16 \mathrm{~mm}$
Lens power	$+6.00 \mathrm{sphere}^{\mathrm{ef}^{0}}$

In this case, the magnification formula is:
magnification $=1 /[1-(0.005 / 1.50) \times(8.00)] \times 1 /[1-(0.016 \times 6.00)]$

SHAPE FACTOR

POWER FACTOR

SHAPE FACTOR \times POWER FACTOR
1.136
1.027
1.106
13.6\%

In this case, the magnification formula is;
magnification $=1 /[1-(0.005 / 1.50) \times(6.00) d \times 1 /[18(0.016 \times 6.00)]$

SHAPE FACTOR	1.020
POWER FACGOR	1.106
SHAPE FACTOR \times POWER FACTOR	1.128
MAGNIFICATION	12.8\%

In this example a change from 8.00 to 6.00 in base curve leads to a decrease of magnification from 13.6% to 12.8%.

DECREASING THE CENTER THICKNESS LEADS TO FURTHER DECREASE

In this case, the magnification formula is:
magnification $=1 /[1-(0.003 / 1.50) \times(6.00)] \times 1 /[1-(0.016 \times 6.00)]$

In this example a change from 5 mm to 3 mm center thickness leads to a further decrease of magnification to 11.9% (originally 13.6% in example \#1).

DECREASING THE VERTEX DISTANCE LOWER

 MAGNIFICATION FURTHER

In this case, the magnification formula is:
magifification $=1 /[1-(0.003 / 1.50) \times(6.00)] \times 1 /[1-(0.013 \times 6.00)]$

In this example a change of vertex distance from 13 mm to 10 mm leads to a further decrease of magnification to 9.8%.

INCREASING THE REFRACTIVE INDEX DECREASES MAGNIFICATION

In this case, the magnification formula is:
magnification $=1 /[1-(0.003 / 1.67) \times(6.00)] \times 1 /[1-(0.013 \times 6.00)]$

SHAPE FACTOR	1.011
POWER FACTOR	1.085
SHAPE FACTOR x POWER FACTOR	1.097
MAGNIFICATION	$\mathbf{9 . 7 \%}$

In this example a change of refractive index (from 1.50 to 1.67) leads to a further decrease of magnification to 9.7\%.

The only variable we have left alone isthe refractive power of the lens (since we cannot change the Rx). Magnification has been reduced from 13.6% to 9.4%, which is quite significant. Remember, the goaf is not to eliminate magnification, but rather to get the magnification levels of the lensto ${ }^{2}$ within 4% of each other.

CONTINUE

Chapter 4 of 5

KNOWLEDGE CHECK

Welcome to the knowledge check on "Magnification and spectacles lenses".
Let's quickly check if you remember what we discussed in this lesson.
This assessment contains 4 questions.

Question
01/04

Aniseikonia usually becomes a problem when the difference in power between the right and left eyes is greater than:1.50 diopter2.50 diopters4.00 diopters5.00 diopters

Question
02/04

What actions will reduce the difference in magnification between the lenses of this prescription: OD +1.00 SPH, OS +6.00 SPH, OU +2.50 ADD. Select all applicable answers:

Decrease magnification of the left lens by selecting a lower base calirve

Increase magnification of the right lens by increasing the center thickness

Increase magnification of the left leqs by increasing the center thickness

Increase magnification of the rightens by selecting a higher base curve

What are the most recommendable actions you can take to reduce the difference in magnification between the lenses of this prescription: OD -0.50 SPH, OS -8.00 SPH.

Selection all applicable answers.

Select a flatter base curve to increase minification of the right eye

Select a steeper base curve to decrease minificationin the left eye Increase index of refraction in the rightJens to decrease minification Increase index of refraction in the lefleens to decrease minification Increase thickness of the right eye

Question
04/04

In the following prescription, which action will have the most impact on bringing the levels of magnification closer together?

OD -2.00 SPH, OS +3.00 SPH

Decreasing the base curve of the right eye and increasingethe base curve of the left eye

Increasing the base curve of the right eyeand decreasing the base curve of the left eye

Increasing the vertex distance of both lenses

Increasing the thickness of both lenses

KEY TAKEAWAYS

IN THE LESSON ON "MAGNIFICATION AND SPECTACLE LENSES" YOU HAVE LEARNED:

1 The elements of lens design which influenge magnification are: base curve, thickness, vertex, and index of refraction

2
There are several methods for adjustingthese three elements in order to create binocular harmony

3 The magnification formula can be used to determine the total amount of magnification difference between the eyes

4 The magnification formula can be used as a predictor of how design changes will solve the problem of magnification imbalance

You have completed the lesson!
© 2022 EssilorLuxottica. All images and text in this tool are protected by copyright laws and are for internal use only. They may not be used or reproduced in any form or manner without the prior written permission of EssilorLuxottica, or in the case of third party materials, the owner of that content.

VERTEX DISTANCE AND VERTEX COMPENSATION

Welcome to the lesson on vertex compensation.
At the end of this lesson, you will be able to:

- Understand vertex distance
- Explain vertex compensation
- Define the essentials of vertex effect
- Arrange the variables into the framework of the formula
- Use the formula to compute the compensated lens power

VERTEX OVERVIEW

VERTEX COMPENSATION FORMULA

KNOWLEDGE CHECK

KEY TAKEAWAYS

VERTEX COMPENSATION IS A MEANS FOR THE OPTICIAN TO ACCURATELY DELIVER THE SAME EFFECTIVE POWER IN THE WORN LENSES AS PRESCRIBED BY THE DOCTOR

Whenever any lens is moved farther or closer in the fif than where it was examined, the perceived power of the lens changes. In lenses with powers less than 6.50 díopters, this change is usually not significant, but in lenses above 6.50 diopters, wearers will usually notice a difference.

Vertex compensation enables the optician who notes differences between the examined and fitting vertices to adjust the lens power in the worn lenses to match the value of the examined power.

the vertex distance is the distance between the back surface of a CORRECTIVE LENS AND THE FRONT OF THE CORNEA

All lenses have two dioptric power values. One is the actual power which may be measured in a lensometer, and the other is the effective power which only the wearer perceives. The same lens may be perceived in different ways by the same wearer depending on variations in vertex (fitting distance).
10

Vertex distance

Vertex affects the perceived power of all lenses. Increasing or decreasing the vertex distance changesthe optical properties of the system. By moving the focal point forward or backward, the optician can effectively change the power of the lens relative to the eye.

The effect is most notable in lenses of greater dioptric power. As lens powerincreases, so will the effect of vertex on power.

WHEN IS VERTEX COMPENSATION NECESSARY?

A prescription conveys the dioptric power necessary to correct a given condition of the eye. In order to achieve the exact result with a pair of spectacles, the dioptric power and the fitting vertex should equal the prescribed power and the examined vertex. Otherwise compensations should be made.
there are mainy ways to take a vertex measurements. electronic DEVICES ARE THE MOST ACCURATE

PLUS OR MINUS LENSES ARE EOUALL
 AFFECTED BY VERTIX EFFECT, BUTMTH
 DIRECTION OF THE EFFECT IS QFiPOSITE

Whenever any lens is moved farther or closer in the fit than where it was examined, the perceived power of the lens changes. In lenses with powers less than 6.50 diopters, this change is usually not significant, but in lenses above 6.50 diopters, wearers will usually notice a difference?

TWO-STEP APPROACH TO CALCULATE THE NECESSARY COMPENSATION IN POWER:

You must first calculate the amount of compensation necessary per millimeter of displacement:

Amount of compensation necessary per millimeter of displacement
$=(\text { Lens power) })^{2} / 1000$

You should then multiply that number by the exact number of millimeters of displacement between the examination vertex and the fitting vertex:

Amount of compensation necessary per millimeter of displacement
X Millimetersof displacement

EXAMPLE \#1: COMPENSATING APHERICAL LENS

The prescription give by the doctor reads a pair of +10.00 SPH , with an examined vertex of 15.0 mm . Upon fitting the individual with lenses, we determine that the new lenses will have a fitting vertex of 12.0 mm (average vertex distance for adults are between 12 to 14 mm). Remember that when moving a plus lens closer, we must compensate and fit with a stronger plus lens.

Amount of compensation
necessary per millimeter of
displacement

$$
=(10.00)^{2} \text { diopters } / 1000 \quad=100 / 1000=0.10
$$

In this example, there is a 5.0 mm displacement.
0.10 diopters

X 3.0mm of displacement
$=0.30$ diopters of compensation

CONSIDER A LENS WITH POWER EQUAL TO +10.00 DIOPTERS, WHICH NEEDS TO BE DISPLACED BY 5.5 MILLIMETERS

First formula: $(10.00)^{2}$ divided by $1,000=100$ divided by $1,000=0.10$ diopters $/ \mathrm{mm}$
Second formula: 0.10 diopters per millimeter of displacement $\times 5.5$ millimeters $=0.55$ diopters
Since it is a plus lens fitted farther away, there is a strengthening effect. We must weaken the lens power to compensate. Therefore, subtract 0.55 diopters from the original lens power of +10.00 diopters $=+9.45$ diopters.

FITTED FARTHER AWAY

First formula: $(10.00)^{2}$ divided by $1,000=100$ divided by $1,000=0.10$ diopters $/ \mathrm{mm}$ Second formula: 0.10 diopters per millimeter of displacement $\times 5.5$ millimeters $=0.55$ diopters

Since it is a plus lens fitted closer, there is a weakening effect. We must strengthen thelens power to compensate. Therefore, add 0.55 diopters to the original lens power of +10.00 diopters $=+10.55$ diopters.

CONSIDER A LENS WITH POWER EQUAPTO -10.00 DIOPTERS, WHICH NEEDS TO BE DISPLACED BY 5.5 MILLIMETERS

First formula: $(10.00)^{2}$ divided by $1,000=100$ divided by $1,000=0.10$ diopters $/ \mathrm{mm}$
Second formula: 0.10 diopters pep millimeter of displacement $\times 5.5$ millimeters $=0.55$ diopters
Since it is a minus lens fitted farther away, there is a weakening effect. We must strengthen the lens power to compensate. Therefore, subtract 0.55 diopters to the original lens power of -10.00 diopters $=-10.55$ diopters.

FITTED FARTHER AWAY

```
                                    FITTED CLOSER
```

First formula: $(10.00)^{2}$ divided by $1,000=100$ divided by $1,000=0.10$ diopters $/ \mathrm{mm}$
Second formula: 0.10 diopters per millimeter of displacement $\times 5.5$ millimeters $=0.55$ diopters

Since it is a minus lens fitted farther away, there is a strengthening effect. We must weaken the lens power to compensate. Therefore, add 0.55 diopters to the original lens power of -10.00 diopters $=-9.45$ diopters.

EXAMPLE \#2: COMPENSATING A CYLINDER POWER

A new Rx reads -10.00 -4.00 x 090 in both eyes, with an examined vertex of 15.0 mm and a fitting vertex of 12.0 mm.

The compensation procedure is the same, but now we must use the formula twice, once for each meridian. We should view cylinders as two separate lenses.

SPHERE COMPENSATION

Amount of compensation necessary per millimeter of displacement

$$
=(-10,00)^{2} \text { diopters } / 1000 \times O^{Q}=100 / 1000=0.10
$$

0.10 diopters of change per mm of displacement $\times 3.0 \mathrm{~mm}$ of displacement $=0.30$ diopters of compensation. Since this is a minus power, moving the lens closer will have astrengthenifg effect. Therefore, we must weaken the lens to compensate. The resulting compensated sphere power is $\mathcal{G} .70$ diopters.

CYLINDER COMPENSATION

In the 180 meridian, we have -14.0 diopters of power:
Amount of compensation
necessary per millimeter of

$$
=(-14.00)^{2} \text { diopters } / 1000
$$

$$
=196 / 1000=0.196
$$

0.196 diopters of changer per of displacement $\times 3.0 \mathrm{~mm}$ of displacement $=0.588$ diopters. Round this answer to the nearest quarterediopter, which is 0.50 diopter.

Because the situation is a minus lens fitted closer, there is a strengthening effect. We must weaken the cylinder lens powerby 0.50 diopter from -14.00 to -13.50 diopters in the 180 meridian. The resulting value will be the new cylinder power:

- Power in cylinder meridian $=-13.50$ diopters
- Sphere power $=-9.50$ diopters

The compensated Rx now reads: -9.50 -4.00x090 fit at 12 mm

Chapter 3 of 4

KNOWLEDGE CHECK

Welcome to the knowledge check on "Vertex distance and vertex compensation".
Let's quickly check if you remember what we discussed in this lesson.
This assessment contains 4 questions.

Question
01/04

All lenses have two dioptric power values. They are:Actual power

Virtual power

Effective power

Distance power

None of the above

Question
02/04

A plus lens with an increased vertex fitting will give:Weakening effectStrengthening effect

No effectNone of the above

Question
03/04

A minus lens with a increased vertex fitting will give:Weakening effectStrengthening effect

No effectNone of the above

Question
04/04

Vertex compensation is made when the dioptric power and the fitting vertex are equal to the prescribed power and the examined vertex.

- True

IN THE LESSON ON "BALANCING PRESCRIBED PRISM" YOU LEARNED:

1
The vertex distance is the distance between the back surface of a corrective lens and the front of the cornea

All lenses have two dioptric power values. One is the actual power which may be measured in a lensometer, and the other is the effective power which only the wearer perceives

3
Vertex compensation enables the optician who notes differences between the examined and fitting vertices to adjust the lens power in the worn lenses tomatch the value of the examined power

Whenever any lens is moved fartheror closer in the fit than where it was examined, the perceived power of the lens changes. In lenses with powers fess than 6.50 diopters, this change is usually not significant, but in lenses above 6.50 diopters, wearers will usually notice a difference

5
To calculate the necessary compensation in power, you must:

- first calculate the amount of compensation necessary per millimeter of displacement. It is equal to (Lens power) 2, 9000
- then multiply that number by the exact number of millimeters of displacement between the examination vertex and the fitting vertex

You have completed the lesson!

© 2022 EssilorLuxottica. All images and text in this tool are protected by copyright laws and are for internal use only. They may not be used or reproduced in any form or manner without the prior written permission of EssilorLuxottica, or in the case of third party materials, the owner of that content.

FOCAL LENGTH OF A SPECTACLE LENS

Plus lenses have a ___ focal point.

Select the best answer and then click "Submit"

Correct
Choice Text

02 FOCAL LENGTH OF A SPECTACLE LENS

What is the focal length of a 10 diopter lens?

Select the best answer and then click "Submit"
\qquad _.

Select the best answer and then click "Submit"

Correct
Choice Text
dependent on each other
directly proportional

-

Select the best answer and then click "Submit"

cornea

The distance between the front surface of a corrective lens and the front/ff the cornea

The difference between the back surface of a corrective le ns and the front of the corrective lens

\qquad focal point.

\qquad .

Select the best answer and then click "Submit"

two prisms base to base
p^{0}

os VERTEX COMPENSATION
 All lenses have two dioptric powers. They are:

Select the best answer and then click "Submit"

Correct
Choice Text

Virtual power and effective power

- Actual power and effective Bower

The examined and fitting vertex will be the same when optometrists use this instrument to obtain the patient's Rx:
Select the best answer and then click "Submit"

Phoropter

Diopter

VERTEXCOMPENSATION

A plus lens with an increasedvertex fittigg will result in \qquad .

- strengthening effect
strabismus effect

A minus lens with an increased vertex fitting will result in \qquad ـ.

Select the best answer and then click "Submit"

12
VERTEX COMPENSATION

Multiple Choice \vee

$+1$

Multiple Choice \vee

VERTEX COMPENSATION
If a patient is wearing a -8.50 diopter sphere and the adjustment is made to move the glasses closer to their eyes, what effect will this have on the effective power of the lens?

Select the best answer and then click "Submit"
\longrightarrow Multiple Choice \checkmark

 Choice Text

8\%

MAGNIFICATION AND SPECTACLE LENSES

Total thickness of the existing lenses is used to determine the difference between the two eyes.

Select the best answer and then click "Submit"ophthalmic distance

MAGNIFICATION AND SPECTACLE LEASES

-
percentage magnification

Correct
Choice Text
What happens to the magnification difference wher one base curve is steepened and the other flattened?

Select the best answer and then click "Submit"

Reduces the magnification difference

Reduces pantoscopic tilt

MAGNIFICATION AND SPECTACLE LENSES
It is difficult to control imbalances using \qquad since both lenses are mounted in the same frame.

Select the best answer and then click "Submit"
\qquad
focal length

19 MAGNIFICATION AND SPECTACLE LENSES

Which of the following is a factor when determining magnification?

Select the best answer and then click "Submit"

Correct
Choice Text

From:	kaviles@abo-ncle.org
To:	Shoven Paige
Subject:	ABO Course Approval
Date:	Wednesday, March 6, 2024 2:21:07 PM

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Lexington, KY 40507

703-719-5800•800-296-1379

Web Address: www.abo-ncle.org

Dear Walter,
This letter will confirm that the American Bgard of Opticianry Education
Committee approved the following online course \hat{i} ©
Course: Lens Standards and Förmulas

Hours: 1
Designation: Ophthalmic Leyed II

Course Number: STWEÓA127-2

Expires: March 6,2027

This course has been approved for 3 years.
Thank you foryour continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800
Sincerêly,
Karla Y. Aviles
Education Coordinator

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CE20 - LENS STANDARDS AND FORMULAS

Sincerely,

Judy Lew, LDO, ABOC

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CE20 - LENS STANDARDS AND FORMULAS

Sincerely,
Brooke K Canasco

Brooke Carrasco, ABOC, NCLE

CEC: LENS STANDARDS AND FORMULAS

LENS STANDARDS AND FORMULAS covers the following areas:

1. ANSI Standards: Describes ANSI standards and how these standards are applied to eyewear, both for lenses and frames. It reviews important considerations for reviewing these standards when making a recommendation to the patient. When working with patients, it is critical that you adhere to the standards set by the American National Standards Institute (ANSI) to ensure patient safety and comfort, as well as reduce your practice liability.
2. Toric Transposition: Defines the concept of Toric Transposition and how to use a lens clock to get the basic power readings of each lens surface.
3. Sagittal Formula: Defines Sagittal value and how to consider different elements of Sagittal value when dispensing lenses to a patient. This course will also describe how to compute the finished thickness of a patient's lenses.

Course outline/timing: Total 50 minutes

1) ANSI Standards (20 minutes)
2) Course Objectives
a) Explain relevant ANSI industry standards
b) Explain why ANSI standards are important
c) Recommend safety eyewear with confidence
d) Explain the impact resistance testing process and its importance
e) Describe how ANSI standards apply when dispensing eyewear to patients
3) What are Standards and Why Do We Need Them?
a) Light Bulb illustration
b) Clothing illustration
c) Spark Plugs for Engines illustration
d) Trains illustration
4) The American National Standards institute
a) What are ANSI Standards?
b) ANSI Standards ensure:O
i) The characteristics and performance of products are consistent
ii) Products are tested the same way
c) Who Develops ANSI Standards?
5) ANSI Standards EOr Safety Eyewear
a) Basic Impact Lens Standards
i) Have a minimum center thickness of 3.0 mm
ii) Be stamped with the manufacturer's trademark
b) Highampact Standards for Safety Eyewear
i) Minimum thickness of 2.0 mm
ii) Capable of resisting impact from a 0.25 " steel ball traveling at 150 feet per second
iii) Marked with manufacturer's trademark and a '+' after the trademark
iv) Made from polycarbonate material,the safest choice
c) Safety frames:
i) Must be exposed to high-velocity and high-mass impact resistance tests while retaining the lenses
ii) Must be marked with Z87-2, indicating they can be used for basic or highimpact
d) Side Shields:
i) Lateral protection will be 10 mm behind the corneal vertex
e) Injuries In the Workplace
i) Every day an estimated 1000 eye injuries occur in America workplaces
ii) The annual financial cost of these injuries is more than $\$ 300$ million in lost
production time, medical expenses, and workers compensation.
iii) Eye injuries happen because of:
(1) Striking or scraping: the majority of eye injuries result from small particles or objects striking or scraping the eye, such as: dust, cement chips, metal slivers, and wood chips. These materials are often ejected by tools, windblown, or fall from above a worker. Large objects may also strike the eye or face, or a worker may run into an object causing bluntforce trauma to the eyeball or eye socket
(2) Penetration: objects like nails, staples, or slivers of wood or metal can go through the eyeball and result in a permanent loss of vision
(3) Chemical and thermal burns: industrial chemicals or cleaning products are common causes of chemical burns to one or both eyes. Thermal burns to the eye also occur, often among welders. These burns routinely damage workers' eyes and surrounding tissue
6) Liability and The Ten Principles
a) The Ten Principles:
i) Insure that the lab supplying the eyewear you are dispensing, is properly ensured
ii) Insure that the lab supplying the eyewear you are dispensing, is properly ensured
iii) Inspect all eyewear to ensure they are properly marked. Ifit is not, reject the job and return it to the fabricating lab
iv) Never substitute safety frame parts
v) Never solder or otherwise "alter" a safety frame. Replace any broken or missing parts with original factory parts
vi) Never re-edge a safety lens If you re-edge, you are responsible for monogramming the lens, thereby identifying yourself as the optical responsible for the performance of the eyewear
vii) Know the policy of the Company you serve. Make exceptions only if written and signed by the person in charge of the program
viii) Make sure side-shields on ati prescription safety eyewear are the exact model designed to fit the framesDo not supply side shields that are not tested on a specific frame style
ix) Watch for loose lenses of any find. If the frame is stretched or the lenses are too small, they shouldbe replaced. Also, be on the lookout for scratched or pitted glass lenses. They will fail with minimal impact and represent a danger to the wearer. Contact the person responsible for the patient's safety and explain the hazard you have identified
x) Institutea "Duty to Warn Policy" in your optical for all patients
7) Key Takeaways
a) In your day-to-day activities, you will meet patients with different needs. You will need to determine if the patient's need is for the workplace, general-purpose, or sports eyewear
b) You peed to adhere to specific ANSI standards to ensure patient safety and comfort
c) Safety requirements set by ANSI need to be followed to ensure patient safety and avoid diability
d) Following the ten principles of safety eyewear will help you reduce liability
8) TORIC TRANSPOSITION (15 minutes)
9) Course Objectives
a) Define Toric Transposition
b) Explain the procedure of Toric Transposition
c) Use a lens clock to get basic power readings from each lens surface
d) Combine front and back readings to get the total lens power of a lens
e) Use a lens clock to get a quick add reading on traditional segments
10) What Is the Purpose of Toric Transposition?
a) Toric Transposition definition
b) Spectacle lens powers are achieved by combining various surface curvatures.
i) The lens clock is an instrument that reads surface curves.
ii) Front curves are generally convex and as such referred to as plus powers.
iii) Back curves are generally concave and as such referred to as minus powers.
iv) In order to derive lens power, you must read the power of the front curve and add it to the power of the back curve. The resulting value is the lens power.
v) Example
11) Lens Clock / The Tool
a) What is a Lens Clock?
i) Definition and what it is used for γ
ii) If the curve being measured is on the front surface of the lens, the black numbers apply
iii) If the curve beingmeasuredis on the back surface of the lens, the red numbers will apply
iv) A lens clock is precisely calibrated if it reads zero when pressed against a perfectly flat hard surface.
b) Using the Lens Clock Step by Step
12) Lens Clock and Proper Procedures
a) Proper Lens Clock-Rrocedure FrontSide
b) Proper Lens Clock Procedure MinusSide/Spheres
c) Proper Len Cloek Procedure for Cylinder Surfaces
d) Proper LensClock Procedure for Minus Side/Cylinders
e) Toric Transposition and Axis
f) Toric Transposition/Bonus/Reading Add Power
13) Key Takeaways
a) What is Toric Transposition
b) Proper procedure for executing Toric Transposition
c) How to use a lens clock to get readings from both front and back surface
d) How to resolve readings from both sides to get total lens power
e) How to read an add power with a lens clock
14) SAGITTAL FORMULA (15 minutes)
15) Course Objectives
a) Define Sagittal Value
b) Explain the procedure of Toric Transposition
c) List the elements of thin lens design
d) Arrange the variables into the framework of the formula
e) Use the formula to compute the finished thickness of any given lens
16) Sagittal Formula
a) Sagittal Formula definition
i) Sagittal Formula example
17) Elements of Lens Thickness
a) Variables Which Affect Lens Thickness
i) Frame Size
ii) Lens Shape
iii) Decentration
iv) Index of Refraction
v) Specified Center on Minus Lenses or the Edge on Plus Leenses
b) Frame Size
i) Frame size is the most significant element of thin dens denn.
c) Lens Shape
i) Second to frame size, shape is a significant factor in reducing lens thickness.
(1) Effective Diameter
d) Decentration
i) Decentration is the third most significant factor in arriving at the finished thickness of a lens.
e) Computing Decentration
i) Step 1: A Box $+D B L=$ FrameRd
ii) Step 2: Frame Pd ${ }_{8}$ Patient $\mathrm{Pd}=$ Total Decentration
iii) Step 3: Frame Rd/2 = Monuclular Frame Pd
iv) Step 4: Subtract patients monocular Pd (left/right) from above
v) Example
f) Index of Refraction
i) Définition
ii) Example
g) Specified Center onMinus Lenses or Edge on Plus Lenses
h) Talk About Lenses Before Picking Out a Frame
18) Assembling the Formula
a) Finished Lens Thickness Computation
i) Step 1: Compute the decentration, double it, and add that value to the effective diameter of that shape.
iij) Step 2: Using the following formula, compute the Sagittal value or thickness value. Radius Squared x Dioptric Power/2000 x (N-1) $=$ Sag (Thickness) in mm (a) Radius $=1 / 2$ of the number computed in Step 1 (v)
(b)Dioptic Power = Strongest Meridian of the lens. (Working with this number will always give the maximum thickness. Depending upon location of power, the reallens may be slightly (c) thinner.)
$2000=$ constant
(d) $\mathrm{N}=$ Index of Refraction of material being used
iii) Step 3: The answer in step 2 tells us the thickness of the lens with a zero edge (minus lens) or zero center (plus lens). We need to add 1.5 mm to calculate the real world lens thickness. This answer is the approximate finished thickness of the job. If the lens is plus, the answer refers to center thickness. If the lens is minus, the answer refers to edge thickness.
iv) Example \#1
v) Example \#2
a) How Sagittal Value relates to lens thickness
b) The many different elements of thin lens design
c) How each element can be controlled to create the thinnest lens
d) To arrange the variables into the framework of the formula
e) How to use the formula to compute the finished thickness of any given lens

Learning Objectives:

1. Explain the importance of adhering to ANSI standards when dispensing eyewear to patients, including the impact resistance testing process and the characteristics and performance requirements for safety eyewear.
2. Define and describe the concept of Toric Transposition, including how to use a lens clock to obtain basic power readings from each lens surface and how to combine front and back readings to determine the total lens power.
3. Define Sagittal Value and list the elements that affect lens thickness, including frame size, lens shape, decentration, index of refraction, and specified center or edge on lenses. Explain how to use the Sagittal Formula to compute the finished thickness of a given lens.

Topic Screen ID		Sagittal Formula of	
		${ }_{6}$ Template	Multiple Choice with
Screen Content			
Title	Question 4 e		
Prompt	Select the best answer then click Submit.		
Text	Maximum,thickness in minus lenses is evident at the		

Topic	Toric Transposition		
Screen ID			
Screen Content	Template	Multiple Choice with Single Correct Answer	
Title	Question go		
Prompt	Select.the best answer then click Submit.		
Text	Transpose the following Rx into plus cylinder form:		

Topic	Toric Transposition				Template
Screen ID	Multiple Choice with Single Correct Answer				
Click all answers then click Submit.	WA	Incorrect.	Show ticKs and crosses next to option. Click NEXT and branch to next page		

Topic	ANSI Standards		
Screen ID	Template	Multiple Choice with Single Correct Answer	
Screen Content	c°		
Title	Question 15		

Topic	ANSI Standards			
Screen ID				
Screen Content	Template	Multiple Choice with Single Correct Answer		
Title	Questionit			
Prompt	Selectathe best answer then click Submit.			

Topic	ANSI Standards				Multiple Choice with Singler
Screen ID				\| Template	
Text	Which of the following statements is true regarding eyewear that falls outside established ANSI tolerances for optical power?				
Learner options Place an X in the box to the left of the correct answer(s).		- ${ }^{\text {er }}$			
			A	It is ille	al to dispense the eyewear to a consumer in
			B	The con	umer must be informed the lenses do not me
			C	It is leg	to dispense the eyewear if the consumer sig
		X	D	It is leg	to dispense the eyewear
Delete unu and text.	used choices				
Programm	ming Instruct		yst	m Respo	e Move to next frame

Topic	Sagittal Formula						+10
Screen ID				Template		tiple Choice with Single Correct Answer	0^{5}
Learner options Place an X in the box to the left of the correct answer(s).							
			A	2.2 mm			
		X	B	3.2 mm			
			C	5.2 mm			
			D	7.4 mm			
Delete unu and text.	hoices						
Programm	Instruct	s/	yst	m Respo		Move to next frame S^{\prime}	

Topic	ANSI Standards		
Screen ID			
Screen Content	Template	Multiple Choice with Single Correct Answer	
Title	Question 20		
Prompt	Select the best answer then click Submit.		

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:02 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Lensemetry

Hours:

Designation: Ophthalmic Level I
Course Number: STWEOA123-1

Expires: February 5, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:14 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Lensemetry

Hours:

Designation: Ophthalmic Level I
Course Number: CTWEOA004-1

Expires: February 5, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CE17 - LENSOMETRY

Sincerely,
Brookes K Carrasco

Brooke Carrasco, ABOC, NCLE

CEC: LENSOMETRY

LENSOMETRY covers the following areas:

1. Lensometry - Explain the purpose of a lensometer and know the parts of a lensometer. Learn the different parts of a lensometer and the functionality of each part. Learn how to use and operate a lensometer to verify a prescription.
2. Lensometry 2 - Describe how a lensometer is used to measure Sphere Power, Cylinder Power, and Prism. Learn and the steps for operating a lensometer to perform these measurements
3. Lensometry 3 - Learn and know how to identify Single Vision Spherical lense and Single Visionc Cylindrical lenses using a lensometer. Determine add powers for flat top multifocals and locate power in progressive lenses.
4. How to Use An Autolensometer - This course provides information on how to use an autolensometer to measure the power of a lens. It reviews the different parts of an autolensometer and key steps for using this instrument with patients.

Course outline/timing: Total 60 minutes

1) Lensometry
2) Course Objectives
a) Describe how a lensometer is used to measure Sphere\&ower, Cylinder Power, and Prism
b) Describe the steps for operating a lensometer to perform these measurements
3) Using a Lensometer
a) What is a Lensometer?
i) Measure spherical power
ii) Measures cylindricalpower and axis
iii) Measures the optical center of a lens
iv) Determines the degree and direction of prism
v) Is capable of marking the center of the lens and various other measurements critical to proper lens performance
b) By measuring the lens properties and comparing this to the written prescription, you can determine if:
i) The lenses do frot match the prescription and need to be remade
ii) The lenses match the prescription and the patient needs to be re-examined for a new prescription
4) LENSOMETER - PARTS AND FUNCTIONALITY
a) Parts of a Lensometer
i) Adjustable Eyepiece
ii) Auxilary prism ring
iii.) Lens Holder
(av) Axis Wheel
v) Power Drum
vi) Spotting Device
vii) Lens Table/Stage
viii) The Reticle
ix) The Target

OPERATING A LENSOMETER
a) Using a Lensometer you can measure:
i) Sphere power of a lens
ii) Cylinder power of a lens
iii) Axis location of the cylinder power
iv) Optical Center of a lens
v) Prism location
6) VERIFYING A PRESCRIPTION
a) Verifying a prescription using a lensometer
i) Distance Vision Power
ii) Prism
iii) Near ADD Power
7) Key Takeaways
a) A lensometer is used to determine the spherical power, cylindrical power and axis, optical center of a lens, and prism
b) A lensometer consists of seven primary parts, including the: adjustable eyepiece, auxiliary prism ring, lens holder, axis wheel, power drum, spotting devise, and lens table
c) If a lens does not provide satisfactory vision, it is important to use a lensometer to validate that the lens is accurate with regard to Distance Vision, Prism, and Near Vision

Course Outline / Timing

8) Lensometry 2
9) Course Objectives
a) Describe how a lensometer is used to measure Sphere Power, Cylinder Power, and Prism
b) Describe the steps for operating a lensometer to perform these measurements
10) LENSOMETER BASIC REVIEW
a) By measuring the lens properties and comparing them to the written prescription, you can determine if:
i) The lenses do not match the prescription and need to be remade
ii) The lenses match the prescription and the patient needs to be re-examined for a new lens prescription
11) LENSOMETRY 2 - INTRODUCTION AND OBJECTIVES
a) You will learn how to use a lensometer to:
i) Measure the spherical power of a lens
ii) Measure cylindrical power of a lens
iii) Measure Prism
b) Parts of a Lensometer
c) Steps for Focusing the Eyepiece
12) MEASURING THE LENS
a) Steps for measuring the spherical power of a lens \bigcirc
b) Steps for measuring the cylindrical power of a 1ens
13) PLUS OR MINUS CYLINDER FORM
a) Rotating the power drum of the lensometer clockwise will result in minus cylinder power
b) Rotating the power drum counterclockwise will result in plus cylinder power
14) Prism - An Introduction
a) Prism Directions
i) Base In (BI) - If the target is towards the nose it is prism Base In
ii) Base Out (BO) - If the targe tis towards the ear, it is prism Base Out
iii) Base Up (BU) $)_{5}$ - If the target is up, it is prism Base Up
iv) Base Up ($B \Delta$) - If the target is up, it is prism Base Up
b) How to Measure Prism With a Lensometer
15) Key Takeaways
a) Using a lensometer, you can measure sphere power of a lens, cylinder power of a lens, axis location of the cylinder power, optical center of a lens, and prism location
b) The first step before marking any measurement using a lensometer is to focus the eyepiece
c) Cylinder form can occur in either plus or minus form
d) Prism lenses are usually used to correct a muscle imbalance between the two eyes
e) There are four basic prism directions: base in, base out, base up, and base down

Course Outline / Timing
16) Lensometry 3
17) Course Objectives
a) Identify Single Vision Spherical Lenses
b) Identify Single Vision Cylindrical Lenses
c) Determine Add Powers forFlat Top Multifocals
d) Locate Power in Progressive Lenses
18) OPTICAL MEASUREMENTS
a) There are three types of measurements with a lensometer
i) Sphere Power
ii) Cylinder Power
iii) Prism
b) Optical Measurements
i) Identifying Single Vision Spherical Lenses
(1) How you can verify single vision spherical lenses for optical quality.
ii) Identifying Single Vision Cylindrical Lenses
(1) How to verify single vision cylindrical lenses for optical quality
19) FLAT TOP MULTIFOCALS AND PROGRESSIVE LENSES
a) Determining Add Powers for Flat Top Multifocals
i) Steps to verify finished eyewear with flat top multifocal lenses.
b) Locating Power in Progressive Lenses
i) Steps to verify finished eyewear with progressive lenses.
20) Key Takeaways
a) Identify Single Vision Spherical Leenses
b) Identify Single Vision Cylindrieal Lenses
c) Determine Add Powers for Flat-Top Multifocals
d) Locate Power in Progresssive Lenses
21) How to Use An Autolensometer

Course Objectives
a) Identify the different parts of an autolensometer
b) Describe and demonstrate how to operate an autolensometer
c) Understand how to measure lenses and contact lenses
a) The different parts of an autolensometer
i) Screen
ii) Lens holder
iii) Marking pens
iv) Nosepads
v) Lens plate lever
vi) Lens stand
vii) Marking lever and pens
b) How to measure a lens using an autolensometer
i) Position the frames or the lens on the lens holder
c) Reading the measurements on the screen
i) The different sections of the screen
(1) At the center is the cross cursor. This is the target you want to aim for to correctly position the lens on the autolensometer
(2) On each side of the center target are the measurements information, separated from left to right eye. This information includes sphere, cylinder, axis, and addition powers. As well as monocular and binocular pupillary distances
(3) Depending on the model you use, additional information will be available to you, including anindicationcof which lens you are measuring, singlevision or progressive lens measuring target, print options...
ii) Positioning the lens to gain full alignment
(1) Place the lens on the dens stand Move the lens to bring the cross cursor in alignment with the target onthe screen. A message or a visual cue (target changing eolor) will appear when the alignment is complete. Once you have the expected alignment, lower the lens holder slowly, and stabilize thedens.
(2) If you aremeasuring a single lens or the right lens of a frame, the data appears on the right side of the screen. If you are measuring a left lens, the data appears on the left side.
(3) The autolensometer will automatically measure and display the sphere, cylinder, and axis. If there is a prism in the lens, the information will be also automatically displayed.
(4) Once you have measured one lens, save the measurements, and switch to the other lens. When you are finished, raise the lens holder to release the lens.
(5) Repeat the same process for the second eye to complete the measurements.
d) How to measure a Progressive Lens with an autolensometer
i) Near ADD Power
(1) Center the lens in this area to measure the near ADD power of the right lens.
(2) Center the lens in this area to measure the near ADD power of the left lens.
ii) Prism
(1) Center the lens in this area to measure the prism of the left lens.
(2) Center the lens in this area to measure the prism of the right lens
iii) Distance Vision Power
(1) Center the lens in this area to measure the distance vision power of the left lens.
(2) Center the lens in this area to measure the distance vision power of the right lens.

Measuring the ADD power with a regular target
(1) By positioning the near vision zone on the lens pad, you can also measure the addition power of the lens. Save the ADD power for each lens, once you have measured it.
v) Measuring with the progressive lens design visualization mode
(1) Some autolensometers models have a separate visualization mode for progressive lenses (which may automatically appear if a progressive is detected). This mode guides you in the measurements of both distance and near vision, with the help of a progressive lens design shape.
e) Marking Lenses with An Autolensometer
i) Place the lens on the eyeglass table
ii) Position the lens using the cross on the screen
iii) Press the marking lever, and mark the lenses with the marking pens
24) MEASURING A CONTACT LENS WITH AN AUTOLENSOMETER
a) Newer models of autolensometers allow you to measure contact lenses
b) Neutralizing a contact lens
i) Adjust your instrument settings
(1) Change your instrument settings to accommodate the devices ability to read the power of the hard/soft contact lens. (Reference the instruments user manual as needed).
(2) Change and replace the lens stand ${ }^{\ominus}$
(a) Change the lens stand to the accompanying contact lens stand.
Prepare the Lens
(3)
(a) Remove the water or moisture from the lens, and set it on the stand withpaying attention not to distort it. Then, take a mêasurement quickly?
(4) Measuring the Contact Lens
(a) Set the contact lens on the contact lens stand, and adjust the lensplacement as needed.
(b) Lower the lens holder, and hold the contact lens stand which the contact lens is already placed to allow the instrument to verify the power.
25) Key Takeaways
a) An autolensometer will help you measure the properties of your patients' eyeglasses, and not only compare them to the written prescription, but also check for fitting measurements. Doing so, you will identify potential inaccuracies in the fitting measurements and lens power that would warrant a lens remake
b) Autolensometers allow you the ability to measure all lens designs (cut and uncut); , Single-vision, progressive, and multifocal. For lenses mounted in the frame, you can measure fitting heights, and pupillary distances (monocular and binocular)
c) To properly measure eyeglasses, first position the eyeglasses (oriented up) so that the bottom edge is in contact will the lens plate, and centered with the nose pad. Carefully place the lens on the lens pad. Move the lens to bring the cross cursor in alignment with the target on the screen. A message or a visual cue (target changing color) will appear when the alignment is complete
d) Newer models of autolensometers allow you to measure the power of contact lenses, as well as the UV transmittance and blue light absorption properties of your patients' eyeglasses

Cours					
\boldsymbol{e}	Lensometry	Module	Lensometry	Modqle	\#

Topic	How to Use an Autolensometer				
Screen ID				mplate	Multip
Screen Content (Text may be limited.)					
Title	Question-20 λ^{2}, 0^{2}				
Prompt	Select the best answer then click Submit				
Text	What is an autolensometer?				
Learner options Place an X in the box to the left of the correct answer. Delete unused choices and text.		λ^{2}			
		x	A	An aut eyegla for fitt	nso s, a me
			B	The au and ax	add
			C	The aut	enso
			D	The aut	enso

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Thursday, January 18, 2024 6:23 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Maintaining a Healthy Team

Hours:

Designation: Non-Ophthalmic

Course Number: SWEOA013

Expires: January 18, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Thursday, January 18, 2024 6:24 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,

This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Maintaining a Healthy Team

Hours:

Designation: Non-Ophthalmic

Course Number: CWEOA001

Expires: January 18, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I, \qquad Judith (Judy) Lew \qquad do certify that I am the author of the following Continuing Education credit that is being submitted to the American Board of Opticianry for consideration of approval.

CE12 - Maintaining a Health Team

Best regards,

CEC: MAINTAINING A HEALTHY TEAM

Course Description:

MAINTAINING A HEALTHY TEAM covers the following three areas:

1. Ethics and Employee Conduct: Describes the concept of ethics and reviews ethical practices in the practice. Through examples of ethical and non-ethical behavior in the lesson, the learner will be able to apply these concepts to the practice. Learn about and understand how to implement a Code of Conduct for the practice and why it is important to have one.
2. Handling Tough Conversations: Describes key steps for having a tough conversation with a colleague or patient. The learner will learn how to use these key steps when these conversations are necessary. .
3. Conflict Resolution: Provides information on how to identify conflict, how to approach the staff member or patient, and key steps for resolving conflict in the practice.

Course Outline w/timing: 55 minutes

1) Ethics and Employee Conduct (20 min)
a) Introduction
b) Course Objectives
i) Explain what ethics are, and how to create andmaintain an ethical environment
ii) Identify whether or not an action is ethical
iii) Explain the four steps of decision making, and the five factors for making an ethical decision
iv) List individual personal values that impact ethical decision making
v) List questions related to ethics, hiring and termination policies, laws, and standards
c) Ethics and Your Practice
i) Your Practice's reputation is one of its, most important assets
(1) Good businessethics contribute to your reputation and increase your business opportunities. x
(2) Unethical behavior, on the other hand, can result in ill will and negative publicity that hurts your practice's reputation and ability to attract business.
ii) What are Ethics?
(1) ethics are defined as the distinction of right from wrong, good from

5 bad, and fair from unfair.
iii) Ethics and Employee Conduct
(1) Scénario 1
(2) Scénario 2
d) The Decision Making Process
i) Essential Elements of an Ethical Decision
(1) Examine the issue
(2) Weigh the Alternatives
(3) Make a Decision
(4) Evaluate the Consequences
ii) Personal Values and Decision Making
(1) List of Individual personal values
iii) The practice of ethical decision making lies with the individual
(1) Ethical decision-making is influenced by the personal ethical values held by the individual.
(2) It is the responsibility of the staff member to ensure they perform ethically at all times.
e) The Framework for an Ethical Environment
i) Code of Conduct
(1) Fundamental part of Developing and Maintaining an Ethical Environment
(2) What makes a great Code of Conduct?
(a) Should be written for the practice staff
(b) Easy to understand without any technical or legal jargon
(c) Compréhensive.
(d) Supported by your doctors and/or the practice owners.
(e) Accessible.
(f) Visually appealing
(3) What's in it for You and Your Practice?
(a) Reinforce staff loyalty and retention
(b) Prevent legal and regulatory violations
(c) Encourage greater patient loyalty and retention
(d) Build stronger relationships with vendors and other business partners
(4) Creating, Communicating, and Reinforcing Your Code of Conduct
(a) A practice code of conduct is a living document that requires development, publication,education and reinforcement, as well as revisions when necessary.
(i) Must communicate your doctor's or practice leadership's commitment to its purpose and contents in a compelling way.
(ii) Should be communicated in a format that fits the practice staff's characteristics and needs.
(iii) Should be inspirational
(iv) Is an essential communication regarding compliance with laws and regulations.
(v) Should help practice staff make the appropriate decision, by providing guidance, through frequently asked questions, common issues, solutions, and suggestions
(vi) Must be reinforced on a regular basis by the practice's cleadershíp
(5) Key Takeaways:
(a) Ethics are defined as the distinction of right from wrong, good ffrom bad, and fair from unfair
(b) Effective decisions are decisions that you are most satisfied with, given the prevailing circumstances
(c) There are four steps in the effective decision making process: examine the issue, weigh the alternatives, make a decision, and evaluate the consequences
(d) Ethical decision-making is influenced by personal ethical values held by an individual
(e) A code of conduct is a fundamental part of developing and maintaining an ethical environment within your practice
(f) Practice leadership should make every effort to ensure staff follow the code of ethics by educating, communicating and using refresher courses and presentations
(g) There are many benefits of implementing a code of ethics in your practice including staff retention and engagement, reduced risk of violation, enhanced relationships with vendors and suppliers, and greater engagement of patients
2) Handling Tough Conversations (15 min)
a) Course Objectives
i) Understand why people avoid having tough conversations
ii) Explain why it's necessary to have tough conversations
iii) Identify the key steps to consider during a tough conversation
iv) Recognize the additional considerations to apply when navigating a tough conversation
v) List some examples of tough conversations
b) Tough Conversations
i) Short term it looks easier to avoid tough conversations
ii) Most people tend to avoid problems because:
(1) They believe that ignoring the problem will eventually make it go away
(2) Facing problems head-on requires a lot of courage and can appear intimidating at first
(3) They do not want to admit that a problem exists
(4) Past experiences dealing with problems did not turn oút well
(5) They do not like conflict
iii) Remember when facing a tough conversation:
(1) Address the problem as soon as it become evident
(2) Emphasize with the other party
(3) Write down the main points and ask the other party for their opinions
(4) Listen actively
iv) Having a tough conversation is something that will eventually happen
(1) Examples of tough conversationsin the practice
c) Key Steps to Consider During a Tough Conversation
i) Most issues can be resolved with honest conversation
(1) Tough Conversation scenario
(a) 4-step process to handle this situation
(i) Preface the conversation with a commitment to the relationshipe
(ii) CFill emotional tanks
(iii) Replace "you" with "we" as much as possible and do not verbally attack the other person
(iv) Sell the benefit
(b) Summary
d) Key Takeaways
i) It is important to have tough conversations and communicate effectively whenproblems arise
ii) There are four key steps to follow during a tough conversation
iii) There are some additional considerations you need to remember while
γ having tough conversations
(iv) Following the four-step process makes your listener receptive to your message and turns a tough discussion into a productive one
3) Conflict Resolution (20 min)
a) Course Objectives
i) Identify the different types of conflict
ii) Understand the approaches you can take to resolve the conflict
iii) Identify key behaviors to resolve conflicts
iv) Explain the three primary steps in conflict resolution
b) The 5 Types of Conflict
i) Data Conflict
ii) Task Conflict
iii) Relationship Conflict
iv) Value Conflict
v) Structural Conflict
c) Internal and external solutions for the types of conflict
i) Internal solutions
(1) Task, relationship and value conflicts relate to internal sources of conflict and may be much more difficult to resolve.
ii) External solutions
(1) Data and structural conflicts have external source of conflict: they are typically easier to resolve by changing something in the external environment.
d) How to Approach a Conflictual Situation
i) A renowned conflict resolution model proposed by Kenneth Thomas and Ralph Kilmann suggests that there are two dimensions when choosing a course of action in a conflict situation; Assertiveness and Cooperativeness
ii) Within this framework, youmay use one of the following 5 approaches in dealing with conflict:
(1) Collaborating
(a) Types of collaborating
(i) Working together to identify the source of conflict and Cpropose solutions toward the goal
(iii) Learning from each other's insight
(iii) Listening and communicating to promote understanding of needs, goals, and values
(b) Results
(i) Builds relationships and improves the potential for future problem solving
(ii) Promotes creative solutions
(c) Appropriate when;
(i) There is a common desire to work through hard feelings
(ii) There are diverse interests and issues at play, yet a common willingness to reach the goal
(iii) New insights can be beneficial in achieving creative solutions
(iv) The issue is too important to make any compromises
(2) Competing
(a) Types of competing:
(i) Use of authority, the position ofmajority, or power
(ii) Putting pressure on the other through threats, force, or intimidation
(b) Results:
(i) Lower levels of communication and trust
(ii) Risk of escalation
(iii) The other party may withdraw at some point
(iv) Reduces the quality and durability of the solution
(v) Increased likelihood of future problems
(c) Appropriate when:
(i) Working with short time frames and quick action is essential
(ii) More trivial issues are at hand
(iii) Leadership is required for tough decisions
(3) Avoiding
(a) Types of avoidance
(i) Mental or physical withdrawals
(ii) Denial that the problem exists
(iii) Changing the subject
(iv) Blaming or minimizing the other party
(v) Postponing to a future and more appropriate time
(vi) Use of emotions (tears, anger, etc)
(b) Results:
(i) Often the dispute is not resolved
(ii) The dispute keeps on building up and eventually explodes into a much worse situation
(iii) Stress spreads to others (staff offamily members)
(c) Appropriate when:
(i) Potential damage outweighs potential benefits
(ii) The issue at hand is really not important, or another issue is more pressing ${ }^{8}$
(iii) Timing for dealing with the conflict is inappropriate
(4) Accommodating
(a) Types of accommodating
(i) Playing down the conflict to maintain harmony
(ii) Yielding to the other point of view
(iii) Self-sacrifice
(b) Results:
(i) Strengthensthe relationship, which will be more effective cin future problem solving
(iii) Increases the chances that the other party may be more accommodating in the future
(iii) Does not necessarily improve communication and transparency short term
(c) Appropriate when:
(i) Preserving harmony between parties is more important than the outcome
(ii) You are flexible on the outcome, or when the issue is more important to the other party
(iii) It's necessary to build up good faith for future problem solving
(iv) You are wrong or in a situation where the other party could damage your position
(5) Compromising
(a) Types of compromising
(i) Finding middle ground
(ii) Split the difference
(iii) Exchanging concessions
(b) Results:
(i) Both parties feel they have reached their goals while maintaining the relationship
(ii) Both parties may feel they lost the battle and feel the need to get even nexttime
(iii) No relationship is established although it should also not cause relationship to deteriorate
(c) Appropriate when:
(i) Collaboration or competition fails
(ii) Time pressures require quick solutions
(iii) Short-term solutions are needed until more information can beobtained
e) Resolving Conflicts Successfully
i) Key Recommendations:
(1) Set a safe environment
(a) Trust of character
(b) Trust of disclosures
(c) Capability trust
(2) Identify emotions correctly
(a) Examples
(i) Anger
(ii) Confusion
(iii) Frustration
(3) Listen actively and think about your response
(a) Slow down your response
(b) Do not respond immediately
(c) Focus on the speed and volume of your speech
(d) Try to postpone the conversation if you find you cannot respond in a positive manner
(4) Remain Positive
(a) Negative and Positive responses
(5) Avoid Negative Language
(a) Key phrases to avoid
(6) Avoid Confrontational Behavior
(7) Know when to be assertive
(8) Agree on the best solution
f) Patients and Conflict Resolution 5^{5}
i) Patient satisfaction should always be your top priority
ii) Three steps in resolving patient conflicts
(1) Assess the situation
(2) Focus 5
(3) Be deliberate
iii) Apply these steps to real life conflicts
(1), Examples
g) Key Takeaways
i) In your day-to-day activities, conflicts with staff members and patients can occur
ii) There are 5 types of conflicts: data, task, relationship, value and structural. Depending on the type of conflict you are facing, you will need to determine the appropriate approach to solve it
iii) To solve a conflict, you may collaborate or compete with the other party, avoid the conflict, accommodate or compromise
iv) Patient conflicts usually stem from hurt emotions and it's your duty to remove the hurt and ensure patient satisfaction
v) To resolve patient conflicts, you need to follow three primary steps and use key tips, such as identifying the emotion, preparing your responses, being positive, avoiding negative language, avoiding confrontation, and being assertive when required

Test Questions

Topic	Ethics and Employee Conduct		
Screen ID		Template	
Screen Content (Text may be limited.)	Multiple Choice with Single Correct Answer		

Topic	Ethics and Employee Conduct		
Screen ID	Template	Multiple Choice with Single Correct Answer	
Screen Content (Text may be limited.)			

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:03 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY
NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Ocular Anatomy

Hours: 1

Designation: Ophthalmic Level I

Course Number: STWEOA124-1

Expires: February 9, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:18 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY
NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Ocular Anatomy

Hours: 1

Designation: Ophthalmic Level I

Course Number: CTWEOA005-1

Expires: February 9, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CEO3 - OCULAR ANATOMY

Sincerely,

Broofer KCarrasco

Brooke Carrasco, ABOC, NCLE

To Whom It May Concern,

Sincerely,

CEC: ADVANCED OCULAR ANATOMY

ADVANCED OCULAR ANATOMY covers the following areas:

1. Discusses the different parts of the eye and how they contribute to a patient's vision. It also reviews different muscles in the eye and how light is experienced by the eye.
2. Provides detailed information about the anatomy of the eye and how this understanding should be appropriately used when working with patients. It also gives an overview of various ocular diseases.

Course outline/timing:

1) Advanced Ocular Anatomy (50 minutes)
2) Course Objectives
a) Have a deeper understanding of the major parts of the eye
b) Identify the main refractive bodies of the eye
c) Understand accommodation
d) Describe the main purpose of the retina
e) List the six extraocular muscles and how the eye moves
3) Overview of the Visual System
a) The Eye has three main layers:
i) The Outer Layer: The Sclerotic Layer
ii) The Middle Layer: The Uveal Tract
iii) The Inner Layer: The Retina
b) The Crystalline Lens is the central part of the eye
c) The inside of the eye is divided into threechambers
i) Anterior Chamber
ii) Posterior Chamber
iii) Vitreous humor
4) Refraction and Accommodation
a) Cornea
b) Aqueous humor
c) Crystalline lens
d) Vitreous humor
e) Ciliary muscles
f) Zonular fibers
5) Anatomy of the Retina
a) The Optic Disk
b) Fovea
c) There are two types of photoreceptors in the human retina:
6) Rods - What rods are and chart
ii) Cones - What cones are and chart
d) Ganglion Cells - These cells extend to form an optic nerve that conveys information to the
$\gamma^{\text {b }}$ rain and take the electrical information from the bipolar cells and process it to determine shapes, contrast and color.
e) Picture of a Ganglion Cell
f) Bipolar Cells -These cells take the electrical information from the photoreceptor cells and pass it along to other retinal cells.
g) Picture of Bipolar Cells
h) Horizontal Cells - These cells are connected to the photoreceptors that surround the bipolar connected photoreceptor cells and help integrate and regulate the input from multiple photoreceptor cells, increasing your visual acuity.
i) Picture of Horizontal Cells
j) Photoreceptors - This is where the rods and cones are located that convert light into electrical signals. Rods help you with night and peripheral vision. Cones are more concentrated in the macula (the central part of the retina) and proved central and color
vision. Retinitis pigmentosa can cause vision loss called retinitis pigmentosa, while AMD is the loss of central vision.
k) Picture of Photoreceptors
I) Retinal Pigment Epithelium (RPE) - This is a single layer of cells that provide essential nutrition and waste removal for the photoreceptor cells. Accumulation of waste can lead to AMD and Stargardt disease.
m) Picture of Retinal Pigment Epithelium
7) Extraocular Muscles and Eye Movements

What the extraocular muscles are and what they do
a) Superior Rectus - The superior rectus inserts at the anterior (front) portion of the eye and its origin is behind the eye on the common ring tendon. Its primary function is to elevate the eye, and it has a mild secondary function of adduction and intorsion.
b) Picture of the Superior Rectus muscle
c) Superior Oblique - The superior oblique is unique. It inserts on the superion, lateral (earside), and posterior (back) of the eye. The anatomical origin is behind the eye on the lesser wing of the sphenoid bone, but the superior oblique muscle acts á pully, and loops back through a connective tissue sling called the trochlea. Even though it is positioned above the eye, its unique use of the trochlea gives it a primary function is to intort the eye, and secondary functions of depression and abduction.
d) Picture of the Superior Oblique muscle
e) Inferior Rectus -The inferior rectus inserts at the anterior (front) portion of the eye, and its origin is behind the eye on the common ring tendon. Itsprimary function is to depress the eye, and it has a mild secondary function of adduction and extorsion.
f) Picture of the Inferior Rectus muscle
g) Inferior Oblique-The inferior oblique is also. It inserts on the inferior, posterior, lateral portion of the eye. Its origin is onthe medial(middle) maxillary bone. Its primary function is extorsion, and its secondary functions are elevation and abduction.
h) Picture of the Inferior Oblique muscle
i) Lateral Rectus - The lateral rectus inserts at the anterior (front) portion of the eye, and its origin is behind the eye on the greater wing of the sphenoid bone as well as the common ring tendon. Its primary functionis to abduct the eye, and it has no secondary function.
j) Picture of the Lateral Rectừ muscle
k) Medial Rectus - The medial rectus inserts at the anterior (front) portion of the eye, and its origin is behind the eyeon the common ring tendon. Its primary function is to adduct the eye, and it has no secondary function.
I) Picture of the Medial Rectus muscle
7) How are the extraocular muscles controlled?
a) Three cranialnerves are responsible for controlling the extraocular muscles
i) Third cranial nerve (oculomotor nerve)
ii) Fourth cranial nerve (trochlear nerve)
iii) Sixth cranial nerve (abducers nerve)
8) Understanding Eye Movement
a) There are two main kinds of movement:
λ^{9} i) Conjugate movement (eyes move in the same direction)
ii) Disjunctive (eyes move in opposite directions)
9) The Movement of the Eye May Be Affected by Damage to the Cranial Nerves a) Examples
i) Damage may result in lack of movement synchronization between the two eyes, and lead to double vision (diplopia).
ii) Damage to the oculomotor nerve (III) can lead to the inability to coordinate the movements of both eyes (strabismus), also eyelid drooping (ptosis) and pupil dilation (mydriasis).
iii) Lesions may lead to paralysis of the levator palpebrae muscle, removing the ability to open the eye.
iv) Damage to the trochlear nerve (IV) can also cause double vision with the eye adducted and elevated. The result will be an eye which can not move downwards
properly (especially downwards when in an inward position). This is due to impairment in the superior oblique muscle.
v) Damage to the abducens nerve (VI) can also result in double vision. This is due to impairment in the lateral rectus muscle, supplied by the abducens nerve.
vi) Amblyopia (also called lazy eye) is a type of poor vision that happens in just one eye. It develops when there is a breakdown in how the brain and the eye work together, and the brain cannot recognize the sight from one eye.
vii) Ophthalmoparesis is weakness or paralysis of one or more extraocular muscles
XI. Key Takeaways:
a. There are three layers in the eye:
i. The outer layer of the eyeball is a tough, white, opaque membrane called the sclera. The slight bulge in the sclera at the front of the eye is a clear, thin, domeshaped tissue called the cornea.
ii. The middle layer is the choroid. The front of the choroid is the iris, the colored part of the eye. In the center of the iris is a circular opening called the pupil.
iii. The inner layer is the retina. The retina is a thin nerve membrane that detects light entering the eye.Nerve cells in the retina send signals of what the eye sees along the optic nerve to the brain.
b. There are three chambers in the eye:
i. The anterior chamber is the front part of the eye between the cornea and the iris.
ii. The posterior chamber is between the iris and dens.
iii. The vitreous chamber is between the lens and the back of the eye
c. The main refractive element of the eye is the cornea. The crystalline lens is responsible for changing the eye's focal point.
d. Accommodation is the ability of the eye to adapt itself to focus from distant to near objects.
e. The retina consists of 10 distinct layers of $n=r v e ~ c e l l s, ~ n e r v e ~ f i b e r s, ~ l i g h t ~ r e c e p t o r ~ c e l l s, ~$ and supporting tissue.
f. The macula, near the center of the retina at the back of the eyeball, provides the sharp, detailed, central vision a person uses for focusing on what is directly in the line of sight. The rest of the retina provides side (peripheral) vision, which lets a person see shapes but not fine details.
g. There are two pairs of muscles that move the eye from side to side: one pair that moves the eye up and down, and one pair that rotates the eye.
h. Three cranial nerves are responsible for controlling the eye muscles. The movement of the eye may be affected by damage to the cranial nerves.

Topic	Advanced Ocular Anatomy				
Screen ID	Template				Multiple Cboice with Single Correct Answer
Screen Content					
Title	Question -12				
Prompt	Select the best answer then click Submit.				
Text	What is the suggested frequency of eyeexams for healthy individuals?				

Learner options
 Place an X in the box to the left of the correct answer(s).

	A	Once a month
X	B	Once a year
	C	Once every two years
	D	Twice a year

Delete unused choices and text.

Programming Instructions $X /$ System Response ${ }^{\text {S }}$ Move to next frame

Topic	Advanced Ocular Anatomy		
Screen ID	Template	Multiple Choice with Single Correct Answer	
Screen Content	0°		

Topic	Advanced Ocular Anatomy		
Screen ID	Template	Multiple Choice with Single Correct Answer	
Screen Content			

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:05 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY
NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Optimizing Managed Vision Care
Hours: 1

Designation: Non-Ophthalmic
Course Number: SWEOA019
Expires: February 9, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:17 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Judith,
This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Optimizing Managed Vision Care
Hours:

Designation: Non-Ophthalmic
Course Number: CWEOA005

Expires: February 9, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CE13 - OPTIMIZING MANAGED VISION CARE

Sincerely,
Brookes KCarrasco

Brooke Carrasco, ABOC, NCLE

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

CE13 - OPTIMIZING MANAGED VISION CARE

Sincerely,

Pete Hanlin, ABOM

CEC: OPTIMIZING MANAGED VISION CARE

Course Description:

OPTIMIZING MANAGED VISION CARE covers the following areas:
Managing Insurance During the Patients Visit: Know and understand that insurance is a major source of revenue for most practices. Discover why it is important for staff to know which insurance plans are accepted and the fundamental structure of each plan. Understand why it is important for the claims to be processed efficiently and properly
Optimizing Managed Vision Care: Discover how managed vision care works with the providers, labs, and the patients. Know and understand how to best offer eyewear solutions to your patients using their insurance.

Course Outline w/timing: 50 minutes

1) Managing Insurance During the Patients Visit
i) Introduction
(1) Insurance is a major source of revenue for most practices
(2) It is important to know and understand the insurance plans your practice accepts
(3) Handling insurance claims promptly and efficiently will maximize profits for the practice
ii) Course Objectives
(1) Understand the role of the front desk staff in collecting patient insurance information.
(2) Prepare staff members with the patient insurance information for the next day's patients.
(3) Understand the importance of maximizing patient's insurance benefits
(4) Ensure confidentiafity in managing insurance information within the practice
(5) Ensure that insurance co-pays and patient out of pocket amounts are collected
iii) Verifying Patient Eligibility
(1) Ask the patient if they have insurance
(2) Ask for the name of the insurance and/or vision plan
(3) Ask the patient for the respective member ID and/or Social Security.

iv) Obtaifing an Insurance Authorization

(1) Obtain an pre-authorization at least 24 hours, or one business day, prior to the appointment
(2) Call the insurance company or access their website to verify eligibility by using the member ID or the patient's Social Security number.
(3) Print the authorization and coverage level details and place the information in the patient's file.
(4) Confirm the information with the patient prior to their appointment.
v) Communicating Patient Insurance Information to Staff
(1) It is important the patient record has the authorization noted in it
(2) This will help the pre-exam tech and the optician familiarize themselves with the patient's benefits prior to the appointment.
(3) Previewing the authorization allows the staff to highlight fully covered benefits and second pair coverage.
(a) Expected co-payments for services and/or materials
(b) Medical testing (exam,retinal imaging, etc.)
(c) Plan's material coverage options such as:
(d) Materials(Polycarbonate, high index...)
(e) Lens design (Single Vision, progressive addition lenses, bifocal, trifocal)
(f) Anti-reflective
(g) Tint/Polarization
(h) - Photochromic
(i) - Scratch resistant coating
(j) - UV
(k) - Frame allowance
(I) - Contact lenses
vi) Your role as an Optician is to maximize patient benefits
(1) Utilizing fully covered benefits
(a) Increases patient satisfaction
(b) Increases practice reimbursement amount from the plan
(2) Verifying Insurance coverage and issues
(a) Unable to verify patient eligibility issue
(b) Patient has already used their benefits for the gear
vii) Setting the Right Tone With Patients
(1) Talking with a Patient about insurance can be a tricky conversation and costly to the practice
(2) You and your staff need to make sure you haye the authorization of insurance coverage prior to the patient's arfival for their appointment.
(3) When explaining benefits to the patient refrain from using phrases which could lead the patient to think their eyewear will be free.
(4) The best time to talk with a patient about eyewear coverage by their insurance is after the exam
(5) "Avoid Saying" and "PreferredSaying" graph
viii) Insurance at Checkout o
(1) Partner with the front desk staff to better serve your patients during checkout
(a) After the patient has completed their eye exam, you will assist them with their eyewear purchase and explain in detail their vision-benefits.
(b) Afteryou have-assisted the patient, one of two things will happen. Depending upon the policy of the practice, either you:
(i) will order the glasses, collect the fees, and thank the patient, or
(ii) will submit the order and escort the patient to the front desk for check-out
(2) If you escort the patient to the front desk for check-out, the front desk associate will collect the fees, schedule any future appointments, and close with the patient.
(3) Update the health record for the patient
(4) File the insurance electronically
b) Key Takeaways:
i) It is essential to the whole process that the insurance benefits are verified prior to the patient's visit. The front desk professionals may take this responsibility
ii) The entire staff needs to understand how to communicate patient's insurance information in a confidential manner
iii) You should maximize patient's insurance benefits
iv) You should discuss confidently insurance allowances with patients
v) You may need to collect co-pays and patient out of pocket amounts
a) Introduction
b) Course Objective
i) List the key elements of a managed vision care plan
ii) Describe the aspects of different provider networks
iii) Recognize and describe different plan documents
iv) Describe how you can contribute to your practice's profitability by optimizing managed vision care.
c) Anatomy of a Managed Vision Care Plan
(1) All managed Vision Care Plan are built upon the following pillars:
(a) Provider Network
(b) Lab Structure
(c) Plan Documents
(2) The Provider Network
(a) In-Network vs Out-of Network
(i) The plan determines the qualification criteria
(b) Out-of-Network
(i) Are not contracted with the plan
(3) The Lab Structure
(a) There are different types of lab requirements that a managed care plan may require
(i) Open Lab
(ii) Defined Lab Network

1. Contracted Lab
2. Restricted Lab
(4) The Plan Documents
(a) Benefit Summary
(b) Provider Reimbursement Summary
(5) Look at Managed Care as an Opportunity
(a) The best way to view your patients who have managed vision care as opportunities or as GEMS:
(i) G - Most patients with managed vision care are GAINFULLVemployed
(ii) $C E$ - Managed care encourages patients to schedule
(1) regular eye EXAMS
(iii) M Many patients with managed care MAKE decisions based on need and coverage
(iv) S - Patients with managed care want want value or SAVINGS from their coverage
(b) Example of poor explanation of managed care benefits
(c) Example of an excellent explanation of managed care benefits
(6) Managed Vision Care and ECP Profitability
(a) It is important to know and understand the managed care plans used by your patients and how they contribute to the profitability of the practice
(i) Engage with your staff and work together to put an action plan into place for your practice
3. Identity the major plans used by your patient base
4. Understand how each plan reimburses
5. Identify alignment of plan benefits and patient needs
6. Identify how to maintain a high capture rate of managed care patients
(ii) Develop a Plan
(iii) Execute your Plan
7. Start with the Front Desk
8. Follow up with the optical
ii) Key Takeaways
(1) In order to provide the best solutions for managed care patients, it is important to understand how managed vision care plans work
(2) The key elements of any managed vision care plan are provider networks,lab structure, and plan documents
(3) Each managed vision care plan has different requirements for provider network participation
(4) There are two types of lab structures that a plan might employ; open or defined lab network
(5) Understanding various managed vision care documents will enable you to explain plan benefits to patients and provide them with the best possible eyewear solution

| Select the relevant
 answers and then
 click Submit. | Click NEXT to continue. | Show ticks and crosses next to
 option. Click NEXT and branch to
 anext page |
| :--- | :--- | :--- | :--- |
| | Click NEXT to continue. | Incorrect. |

Select the relevant answer then click Submit.	WA	Incorrect. Click NEXT to continue.	Show ticks and crosses next to option. Click NEXT and branch to next page noj

Select the relevant answers then click Submit.	WA	Incorrect. Click NEXT to continue.	Show ticks and crosses next to option. Click NEXT and branch to next page no

Topic	Managing Insurance During the Patients Visit				
Screen ID	Template				Multiple Choice with Single Correct Answer
Screen Content					

Knowledge Check - 4

Select either True or False then click Submit.

When explaining benefits to the patient refrain from phrases which will indicate to the patient that their glasses will be free.s

Select the relevant answers then click Submit.	WA	Incorrect. Click NEXT to continue.	Show ticks and crosses next to option. Click NEXT and branch to next page no

Screen ID			Template	True or False with one correct answer	(
Screen Content					0
Question - 12					0^{20}
Select the best	nsw	rth	click Subm		
Out-of-network providers are contracted with the Plan					
Learner options				$\bigcirc \mathrm{O}^{0} \mathrm{c}^{2}$	
			True	00^{5}	
Place an X in the box to the left of the correct answer(s).		X	False	de $\mathrm{c}^{\text {a }}$	
				$\mathrm{yo}^{\circ} 0^{\text {2 }}$	
Delete unused				0^{5}	
				¢ ${ }^{\text {人 }}$	
choices and text.					
Learner Action	Learner Feedback				Programming Instructions/ System Response
Select the relevant answers then click Submit.	CA		Correct Click NEXT to continue.		Click NEXT and branch to next page
	WA	Ingerrect. Click NEXT to continue.			Show ticks and crosses next to option. Click NEXT and branch to next page

Learner Action	Learner Feedback		Programming Instructions/ System Response
Select the relevant answers then click Submit.	CA	Correct. Click NEXT to continue.	Click NEXT and branch to next apage
	WA	Incorrect. Click NEXT to continue.	Show ticks and crosses next to option. Click NEXT and branch to next page

Select the relevant answers then click Submit.	CA	Correct. Click NEXT to continue.	Click NEXT and branch to next page
	WA	Incorrect. Click NEXT to continue.	Sbow ticks and crosses next to Option. Click NEXT and branch to next page

Topic	Optimizing Managed Vision Care		
Screen ID	Template	Multiple Choice with Single Correct Answer	
Screen Content			

Screen Content

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:07 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Paige,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Pediafic Dispensing

Hours:

Designation: Ophthalmic Level I

Course Number: STWEOA125-1

Expires: February 9, 2027

This course has been approved for $\mathbf{3}$ years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:19 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Paige,
This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Pediafic Dispensing

Hours:

Designation: Ophthalmic Level I

Course Number: CTWEOA007-1

Expires: February 9, 2027

This course has been approved for $\mathbf{3}$ years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,
I, ___Paige Shoven \qquad do certify that I am the author of the following Continuing Education credit that is being submitted to the American Board of Opticianry for consideration of approval.

Pediatric Dispensing

Best regards,

Paige Shouen

Paige Shoven

Pediatric Dispensing
Leonardo Online, On Demand Learning
1 Hr , Tech 1 ABO course

Abstract

Pediatric Dispensing is more than just fitting tiny adults with glasses. This class will compare and contrast the differences in patients as it relates to their age and the changing of their facial structure as they grow from infants to adults.

Timed Outline
Introduction

1. Video (3 minutes)

Discover the children's Category. In this video, there is a brief outline of the upcoming course
2. Children's Dispensing Needs (10 minutes)
a. Dispensing to Children
b. Critical Visual sills
i. Visual Skills and Learnipg Development

1. Visual Acuity
2. Eye Focusing
3. Eye Tracking
c. Unique Facial Characteristics
i. Smaller PD
ii. Smaller Bridge $饣$ Height
iii. Undeveloped Nasal Bridge
iv. Less defined ear cartilage
v. Smatrer head width and temple length
d. Prescription Analysis
if Is it a first-time prescription
4. Astigmatism
5. Hyperopic Prescription
6. Myopic Prescription
ii. Is there a prescribed Prism
iii. Is there a change in prescription since the last visit
iv. Other recommendations from the doctor
v. Prescriptions can be confusing to parents
7. Frame Requirements for Children (10 minutes)
a. Selecting the Right Frame
i. Finding the perfect fit
b. Taking Children's Measurements
i. The fitting Triangle
ii. Facial measurements
8. PD
a. If the child is too small for a pupilometer
b. If the child has strabismus
9. Bridge Height
a. Horizontal Center Line
b. Vertical Center Line
10. Temple width and head width
11. Bridge Shape
a. Frontal Angle
b. Splay Angle
12. Bridge Projection
a. Positive Projection
b. Negative Projection
c. How to measure bridge projection
13. Frame Characteristics (5 minutes)
a. Frame Styles
i. Frame Shape
14. Age of the patient
15. Prescription needs
16. A size measurements
a. Temple Styles
17. Types
i. Drop End (skull temples)
ii. Curl Eads (Cable Temples)
iii. Loop Ends (attachable straps)
ii. Frame Materials
18. Rubber
19. Plastic or Acetate
20. S Injected
21. Metal
22. Titanium
jiif. Offering a Second Pair
iv. Frame Colors
v. Child's age
vi. Recommendations
23. Safety
24. Durability
25. Comfort
26. Stability
27. Aesthetics
b. Reassuring Parents about the quality of the frame
i. Warranty options
28. Lens Requirements for Children (15 minutes)
a. Lens Materials
i. Plastic CR-39
ii. Trivex
iii. Polycarbonate
iv.
b. Optimizing Lens Thickness
i. Refractive Index Considerations
ii. Spherical vs Aspherical Lenses
c. Coatings and Tints
i. Anti Reflective Coatings
ii. Tints
iii. Sunglasses
29. Collection and Aftercare for Children (10 minutes)
a. As children are picking up their glasses, you want to set the tone to ensure they are leaving with a positive impression.
i. Create a lasting great experience
b. Teach them to care for their eyewear
i. Ensure the dispensing appointment is time well spent
c. Check in with them afterwards
i. Continue by checking in
ii. Why is this important
iii. How to prepare for the call
iv. What to expect during the call

14

18

19

20

Which of the following factors does not affect the choice of the lens index?

Select the correct answer.
Prescription (amount of refractive error)
Pupillary distance
Frame measurements
Lens tint

What is the best way to connect with older children?

Talk to them like a child using terms like "kids your age" and "child frames"
Use stickers as an incentive
Ask them about their favorite brands, styles, and any celebrity influencers they admire
Ask them about their budget

What lens material for children's eyeglasses should be avoided because of its lack safety features?

CR-39
Polycarbonate

Trivex

High-index plastic

When explaining how to look after eyewear, it's more important to address

The parent
The child
Both the parent and the child
The whole family

What is the recommended age for a child to have their first eye exam?

By the age of 3
By the age of 4
By the age of 5
By the age of 6

You should seek to build trust with:

The parents
Both parents and the child
The child
The entire family

How can you reassure a parent who is financially concerned about their child's eye care?

Use activelistening skills to make them feel heard and recommend products that fit their child no matter the cost.
Communicate specific offers and insurance packages
Show them all the styles available to appeal to children with different tastes
SRemind them their children's health should not have a price attached to it.

What should be communicated during the patient callback?
Negative words that can cause your patient to lose confidence in you
Positive words to make a good impression
Negative words that can lead to miscommunication

Are anti-reflective coatings suitable for children?

In some situations where they will be extreamly careful with their glasses
Yes, most new AR technologies offer supperior scratch protection
No, children are not bothered by glare
Only after they become teenagers

Can uncorrected poor vision can affect a child's personality and adjustment in their daily life.
Yes
No
Only when they are at school
Only when they are in environments they feel safe in

Which of the following factors does not affect the choice of the lens index?

Prescription (amount of refractive error)
Pupillary distance
Frame measurements
Lens tint

Children of all ages may experience a range of emotions during theireye care visit. Which option below will have little effect on the dispensing process with a young child who has become tired and irritable?
Offer them a distraction such as a toy or a tool like a calcufator, ruler, ©r even the pupillometer to stimulate their curiosity
Ask about their preferences and what they like to do
Take the time to explain the offer so they can make the rightdecisions
Suggest they take a break

Why is it important to stress that children should remove their eyewear using both hands?
Because children tend to have unsteady hand§
Because removing it with just one hand can cause the frame not to fit properly
Because children's hands are small
Children should not remove their glasses themselves
Because of the size of the child they use of their lenses to see the world around them.
More
Less
The same amount
Just the top half
By age the facial structure of a child will generally match those of an adult.
10
11
12
13

When is the fastest period of growth for children's face shape and size?

Between 1 and 3 years
Between 0 and 2 years
Between 2 and 4 years
Between 4 and 6 years

Which of the following is not a skill needed for effective reading?
Color Vision
Eye Focusing
Visual Acuity
Eye Tracking

An underdeveloped nasal bridge can give children negative or zero bridge projection, and this can cause the eyelashes to rub against the back of the lens. What can be done to prevent this?

Adjust the lens curvature
Adjust the lens thickness
Choose a frame with a pantoscopic tilt
Choose a frame with no pantoscopic tilt

If you're looking for a child's frame that is easily molded, strong, flexible, lightweight, and can withstand heat and cold, which material option would you choose?
Plastic
Rubber
Injected
Metal

What could be the benefit of adding a small amount of pantoscopic tilt to the frame?

Choose a frame with a positive bridge protection
Helps prevent the frame from irritating the skin C^{5}
Helps create a more aesthetic appearance
Helps prevent eyelashes from rubbing against the back of the lenses

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:06 PM
To:	Shoven Paige
Subject:	ABO Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,
This letter will confirm that the American Board of Opticianry Education Committee approved the following online course:

Course: Undesstanding Prismatic Effect

Hours:

Designation: Ophthalmic Level I
Course Number: STWEOA126-1

Expires: February 9, 2027

This course has been approved for 3 years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

Garnett, Heather (DPOR)

From:	kaviles@abo-ncle.org
Sent:	Tuesday, February 13, 2024 6:19 PM
To:	Shoven Paige
Subject:	NCLE Course Approval
Follow Up Flag:	Follow up
Flag Status:	Flagged

WARNING: EXTERNAL EMAIL

AMERICAN BOARD OF OPTICIANRY

NATIONAL CONTACT LENS EXAMINERS

217 N. Upper Street, Suite 201

Dear Walter,

This letter will confirm that the National Contact Lens Examiners Education Committee approved the following online course:

Course: Undesstanding Prismatic Effect

Hours:

Designation: Ophthalmic Level I
Course Number: CTWEOA006-1

Expires: February 9, 2027

This course has been approved for $\mathbf{3}$ years.
Thank you for your continued commitment to quality education. If you have any questions regarding the above, please feel free to call the office at (703) 719-5800

Sincerely,

Karla Y. Aviles

Education Coordinator

This email was sent to PShoven@us.luxottica.com. You are receiving this email because you submitted a course for approval.

γ^{S}

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

UNDERSTANDING PRISMATIC EFFECT

Sincerely,

Broolee K Carrasco

Brooke Carrasco, ABOC, NCLE

To Whom It May Concern,

I certify that I have completed the following course in no less than the number of credit hours (1) requested for approval.

UNDERSTANDING PRISMATIC EFFECT

Sincerely,
Paige shouen

Paige Shoven, ABOC

CEC: UNDERSTANDING PRISMATIC EFFECT

Course Description:

UNDERSTANDING PRISMATIC EFFECT covers the following three areas:

1. Understanding Prism in a Prescription: provides detailed information on how to read prism in a prescription and identify different types of prism. It also provides information on how to use a lensometer to identify the amount and base direction of the prism in a lens.
2. Understanding Prismatic Effect: describes how to identify lens power in different types of lenses, It also provides a detailed description of how to use Prentice Rule in measuring the power of a lens.
3. Balancing Prescribed Prism: explains the difference between prescribed prism and induced prism and the purpose of balancing prism. It also provides the rules for canceling, compounding, and balancing prism.

Course Outline w/timing:

1) Understanding Prism In a Prescription (15 min)
a) Introduction
i) Understanding Prescribed Prisms
ii) Understanding Induced Prisms
b) Course Objectives
i) Describe the two types of prism (prescribed and induced) that can exist in a
ii) Explain the base direction of any existing prescription
iii) Use the lensometer to identify the ambunt and base direction of prism in a lens
iv) Identify common problems unwanted and induced prism can cause for the patient
v) Follow industry protocol for reordering lenses exceeding prism tolerances
c) Visualizing Prism in a Lens
i) Prisms are the building blocks of lenses
ii) Plus lenses are a comibination of prisms base to base
iii) Minus lenses are a combination of prisms apex to apex
iv) Base In Prism
v) Base Out Prism
vi) Base DownPrism
vii) Base UpPrism
d) Checking Prisfin with a Lensometer
i) Reading Prescribed prism
ii) Measuring Induced prism
iii.) Reading prism on a Lensometer
iv) What Patients may experience due to unwanted prism
e) Industry Protocol for reordering lenses exceeding tolerances
i) Return the lenses to the lab that made them
ii) Excessive prism should be

Key Takeaways
i) Able to describe the two types of prism (prescribed and induced)
ii) Able to explain the base direction of any existing prescription
iii) Learned to identify common problems unwanted and induced prism can cause for the patient
2) Understanding Lens Power and Prismatic Effect (20 min)
a) Course Objectives
i) Visualize all lenses as a combination of prisms
ii) Describe lens power in both spherical and cylindrical lenses
iii) Transpose any cylinder prescription into either plus or minus cylinder form
iv) Find the power of any lens in the two major meridians of 90 degrees and 180 degrees
v) Use the Prentice rule formula to compute prismatic effect
b) Spherical and Cylindrical Lenses
i) Lens Power in Spheres
ii) Describing a Cylinder Iens
iii) Rules of Transposition
c) Prismatic Effect Calculations
i) Resolving powers in axes 180 and axes 90: All or Nothing
ii) Resolving power with axes of 45 or 135: Half and Half
iii) Resolving power with oblique axes: Use the Table
d) The Prentice Rule Formula translates Variables into real objective values of prismatic effect
i) Lateral Prismatic Effects due to Centration Errors
e) Key Takeaways
i) A spherical lens is formed when a front curve of singular dioptric power is combined with a back curve of singular dioptrie value. The lens which results from that combination is spherical since it has only one overall dioptric power
ii) In order to derive lens power, you must use a lens clock to read the power of the front curve and add it to the power of the back curve. The resulting value is the lens power
iii) Unlike a sphere, which has only oñe power, a cylindrical lens has two separate meridians of power. The meridian with the strongest power is called the "major" meridian, and themeridian woith the weakest power is called the "minor" meridian
iv) The same lens can be designated indwo ways without changing the actual power of the cylinder lens. Thetwo forms of a cylinder lens are known as "plus cylinder form" and "minus cylinder form"
v) The process of switching from one form of cylinder to another is called transposition. The rules of transposition are as follows:
vi) add cylinder to sphere ghiange sign of cylinder
vii) shift axis by 90 degrees by adding 90 to an axis of 90° or less, or subtracting 90 froman axis of 91° or greater
viii) Bycalculating prismatic effects, you can determine the quality and efficiency of any lens. In order to do so, you need to calculate the amount of cylinder at a given angle of the lens. At 180° or 90°, it is all power or no power. At axes 45° and 135°, it is split half and half. Any angle in between, a table is used to get the amount of cylinder power
ix) The Prentice rule helps you calculate the amount of prismatic effect at a given point. The amount of prismatic effect is equal to (Distance in millimeters X Lens Power) / 10
x) When the optical centers of the lenses are centered with the center of the patient's pupils there is no induced prismatic effect. Any misalignment will lead to induced prism. The direction of the base of the induced prism will depend on the type of lens (minus or plus power) and the direction of the misalignment
3) Balancing Prescribed Prism (15 min)
a) Course Objectives
i) Know the difference between prescribed prism and induced prism
ii) Explain the purpose of balancing prescribed prism
iii) Know and explain the rules of prism canceling and compounding
iv) Know and explain the rules of balancing prescribed prism
v) Know and explain how to balance prescribed prism in an actual prescription
b) Prescribed vs Induced Prism
i) Prescribed prism helps those with misaligned optical axis
ii) Normal binocular vision
iii) The different types of Strabismus
iv) Prescribing prism to help patients with Strabismus
v) Base direction of prescribed prism
vi) Causes of Induced Prism
c) The Rules for Balancing Prism
i) Balancing Prism created better cosmetics
ii) Out of balance or unbalanced prism
iii) Splitting prism
iv) Examples
d) Key Takeaways
i) Prism can be prescribed by the doctor to addressmisalignment of the patient's vision.
ii) Prism can also be induced due to fabricationor fitting error.
iii) The desired effect of prescribed prism can be loaded all into one eye (i.e., in one lens) or preferably balanced between both eyes.
iv) The reason we split the prism (between lenses) is to create better cosmetics by balancing thickness and better wearing comfort by balancing weight.
v) If the prescribed prism is up or down, the split should be distributed with up in one eye and down in the other.
vi) In the case of prescribed prism in orout, the base direction should be the same in both eyes and in the same direction as the prescribed prism

[^0]: When the optical centers match the location of the patient's center pupil, there is no prism of any sort.Anytime lenses are ground to situate the centers away from the center pupil, prismatic effect will result. The half of the lens through which the patient views is a prism with a base direction of in, out, up, or down.

[^1]: *In order to derive lens power, you must use a lens clock to read the power of the front curve and add it to the

